[1] 刘金燕, 刘立华, 薛建荣, 等. 重金属废水吸附处理的研究进展 [J]. 环境化学, 2018, 37(9): 2016-2024. doi: 10.7524/j.issn.0254-6108.2017110105 LIU J Y, LIU L H, XUE J R, et al. Research progress on treatment of heavy metal wastewater by adsorption [J]. Environmental Chemistry, 2018, 37(9): 2016-2024(in Chinese). doi: 10.7524/j.issn.0254-6108.2017110105
[2] SHABTAI I A, LYNCH L M, MISHAEL Y G. Designing clay-polymer nanocomposite sorbents for water treatment: A review and meta-analysis of the past decade [J]. Water Research, 2021, 188: 116571. doi: 10.1016/j.watres.2020.116571
[3] XIAO X, CHEN B L, CHEN Z M, et al. Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review [J]. Environmental Science & Technology, 2018, 52(9): 5027-5047.
[4] 曾辉平, 翟龙雪, 李冬, 等. 基于铁泥的磁性水处理材料制备及应用进展 [J]. 环境科学, 2022, 43(1): 26-36. ZENG H P, ZHAI L X, LI D, et al. Preparation and application of magnetic water treatment materials based on iron sludge [J]. Environmental Science, 2022, 43(1): 26-36(in Chinese).
[5] 苏欣悦, 丁欣欣, 闫良国. Fe3O4磁性纳米材料的制备及水处理应用进展 [J]. 中国粉体技术, 2020, 26(6): 1-10. SU X Y, DING X X, YAN L G. Research progress of preparation of Fe3O4 magnetic nanomaterials and applications in wastewater treatment [J]. China Powder Science and Technology, 2020, 26(6): 1-10(in Chinese).
[6] ZAERA F. Probing liquid/solid interfaces at the molecular level [J]. Chemical Reviews, 2012, 112(5): 2920-2986. doi: 10.1021/cr2002068
[7] 李伟, 罗磊, 张淑贞. 应用先进光谱技术研究无机离子的环境界面化学 [J]. 化学进展, 2011, 23(12): 2576-2587. LI W, LUO L, ZHANG S Z. Towards A molecular scale understanding of the chemistry of inorganic ions at environmental interfaces: Application of spectroscopic techniques [J]. Progress in Chemistry, 2011, 23(12): 2576-2587(in Chinese).
[8] WANG Z Y, LIU G C, ZHENG H, et al. Investigating the mechanisms of biochar's removal of lead from solution [J]. Bioresource Technology, 2015, 177: 308-317. doi: 10.1016/j.biortech.2014.11.077
[9] GAO L Y, DENG J H, HUANG G F, et al. Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge [J]. Bioresource Technology, 2019, 272: 114-122. doi: 10.1016/j.biortech.2018.09.138
[10] XIAO J, HU R, CHEN G C. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II) [J]. Journal of Hazardous Materials, 2020, 387: 121980. doi: 10.1016/j.jhazmat.2019.121980
[11] TIAN Y, LI J B, WHITCOMBE T W, et al. Application of oily sludge-derived char for lead and cadmium removal from aqueous solution [J]. Chemical Engineering Journal, 2020, 384: 123386. doi: 10.1016/j.cej.2019.123386
[12] SU X Y, CHEN Y, LI Y F, et al. Enhanced adsorption of aqueous Pb(Ⅱ) and Cu(Ⅱ) by biochar loaded with layered double hydroxide: Crucial role of mineral precipitation [J]. Journal of Molecular Liquids, 2022, 357: 119083. doi: 10.1016/j.molliq.2022.119083
[13] 张雪. 插层镁铝水滑石对水中重金属的吸附性能与机理研究[D]. 济南: 济南大学, 2021. ZHANG X. Study on adsorption performance and mechanisms of intercalated MgAl-layered double hydroxide for heavy metals from water[D]. Jinan: University of Jinan, 2021(in Chinese).
[14] ZHOU J Y, LIN Z Y, REN H Y, et al. Layered intercalation materials [J]. Advanced Materials, 2021, 33(25): 2004557. doi: 10.1002/adma.202004557
[15] LAIPAN M W, YU J F, ZHU R L, et al. Functionalized layered double hydroxides for innovative applications [J]. Materials Horizons, 2020, 7(3): 715-745. doi: 10.1039/C9MH01494B
[16] 吕维扬, 孙继安, 姚玉元, 等. 层状双金属氢氧化物的控制合成及其在水处理中的应用 [J]. 化学进展, 2020, 32(12): 2049-2063. LV W Y, SUN J A, YAO Y Y, et al. Morphology control of layered double hydroxide and its application in water remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063(in Chinese).
[17] 张爽, 丁欣欣, 闫良国. 改性水滑石类材料的制备及其吸附性能研究进展 [J]. 中国粉体技术, 2021, 27(1): 1-10. ZHANG S, DING X X, YAN L G. Research progress on preparation and adsorption properties of modified layered double hydroxides [J]. China Powder Science and Technology, 2021, 27(1): 1-10(in Chinese).
[18] 毛方琪, 郝培培, 孔祥贵, 等. 双金属复合氢氧化物在重金属污染土壤/水修复方面的研究进展 [J]. 中国科学:化学, 2021, 51(5): 493-508. doi: 10.1360/SSC-2020-0123 MAO F Q, HAO P P, KONG X G, et al. Layered double hydroxides as amendment for remediation of heavy metal ions in water and soil [J]. Scientia Sinica Chimica, 2021, 51(5): 493-508(in Chinese). doi: 10.1360/SSC-2020-0123
[19] XIE Y Y, YUAN X Z, WU Z B, et al. Adsorption behavior and mechanism of Mg/Fe layered double hydroxide with Fe3O4-carbon spheres on the removal of Pb(II) and Cu(II) [J]. Journal of Colloid and Interface Science, 2019, 536: 440-455. doi: 10.1016/j.jcis.2018.10.066
[20] SHAN R R, YAN L G, YANG K, et al. Adsorption of Cd(II) by Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies [J]. Journal of Hazardous Materials, 2015, 299: 42-49. doi: 10.1016/j.jhazmat.2015.06.003
[21] LIU C, WANG Q M, JIA F F, et al. Adsorption of heavy metals on molybdenum disulfide in water: A critical review [J]. Journal of Molecular Liquids, 2019, 292: 111390. doi: 10.1016/j.molliq.2019.111390
[22] WANG Z Y, TU Q S, SIM A, et al. Superselective removal of lead from water by two-dimensional MoS2 nanosheets and layer-stacked membranes [J]. Environmental Science & Technology, 2020, 54(19): 12602-12611.
[23] WANG Z Y, SIM A, URBAN J J, et al. Removal and recovery of heavy metal ions by two-dimensional MoS2 nanosheets: Performance and mechanisms [J]. Environmental Science & Technology, 2018, 52(17): 9741-9748.
[24] LEE Y H, ZHANG X Q, ZHANG W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition [J]. Advanced Materials, 2012, 24(17): 2320-2325. doi: 10.1002/adma.201104798
[25] QIU S J, WANG X, ZHANG Q R, et al. Development of MoS2/cellulose aerogels nanocomposite with superior application capability for selective lead(II) capture [J]. Separation and Purification Technology, 2022, 284: 120275. doi: 10.1016/j.seppur.2021.120275
[26] YANG F, CAO Z F, WANG J, et al. In situ self-assembly of molybdenum disulfide/Mg-Al layered double hydroxide composite for enhanced photocatalytic activity [J]. Journal of Alloys and Compounds, 2019, 817: 153308.
[27] CHEN S, YANG F, CAO Z F, et al. Enhanced photocatalytic activity of molybdenum disulfide by compositing ZnAl-LDH [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 586: 124140.
[28] 李红艳. 基于生物模板的LDHs/钼系微纳复合光催化剂的制备及其性能研究[D]. 济南: 济南大学, 2017. LI H Y. Preparation of LDHs/molybdenum-based micro/nano composite photocatalyst based on biological template and its properties[D]. Jinan : University of Jinan, 2017(in Chinese).
[29] WEI Y H, LI G S, WANG J H, et al. Self-assembled nanohybrid from opposite charged sheets: Alternate stacking of CoAl-LDH and MoS2 [J]. Chinese Journal of Structural Chemistry, 2018, 37(7): 1093-1101.
[30] LI X Y, GUO M, Bandyopadhyay P, et al. Two-dimensional materials modified layered double hydroxides: A series of fillers for improving gas barrier and permselectivity of poly (vinyl alcohol) [J]. Composites Part B:Engineering, 2020, 207: 108568.
[31] ZHOU K Q, GAO R, QIAN X D. Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): Towards reducing fire hazards of epoxy [J]. Journal of Hazardous Materials, 2017, 338: 343-355. doi: 10.1016/j.jhazmat.2017.05.046
[32] SU X Y, GUO Y X, YAN L G, et al. MoS2 nanosheets vertically aligned on biochar as a robust peroxymonosulfate activator for removal of tetracycline [J]. Separation and Purification Technology, 2022, 282: 120118. doi: 10.1016/j.seppur.2021.120118
[33] HO Y S, MCKAY G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents [J]. Process Safety and Environmental Protection, 1998, 76(4): 332-340. doi: 10.1205/095758298529696
[34] ZHANG X, YAN L G, LI J, et al. Adsorption of heavy metals by l-cysteine intercalated layered double hydroxide: Kinetic, isothermal and mechanistic studies [J]. Journal of Colloid and Interface Science, 2020, 562: 149-158. doi: 10.1016/j.jcis.2019.12.028
[35] GONZÁLEZ M A, PAVLOVIC I, BARRIGA C. Cu(II), Pb(II) and Cd(II) sorption on different layered double hydroxides. A kinetic and thermodynamic study and competing factors [J]. Chemical Engineering Journal, 2015, 269: 221-228. doi: 10.1016/j.cej.2015.01.094
[36] ZHU S D, ASIM KHAN M, WANG F Y, et al. Rapid removal of toxic metals Cu2+ and Pb2+ by amino trimethylene phosphonic acid intercalated layered double hydroxide: A combined experimental and DFT study [J]. Chemical Engineering Journal, 2020, 392: 123711. doi: 10.1016/j.cej.2019.123711
[37] AGHAGOLI M J, BEYKI M H, SHEMIRANI F. Facile synthesis of Fe3O4/MoS2 nanohybrid for solid phase extraction of Ag(I) and Pb(II): Kinetic, isotherm and thermodynamic studies [J]. International Journal of Environmental Analytical Chemistry, 2017, 97(14/15): 1328-1351.
[38] LIU C, ZENG S L, YANG B Q, et al. Simultaneous removal of Hg2+, Pb2+ and Cd2+ from aqueous solutions on multifunctional MoS2 [J]. Journal of Molecular Liquids, 2019, 296: 111987. doi: 10.1016/j.molliq.2019.111987
[39] LUO J M, FU K X, SUN M, et al. Phase-mediated heavy metal adsorption from aqueous solutions using two-dimensional layered MoS2 [J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38789-38797.
[40] YUAN W Q, KUANG J Z, YU M M, et al. Facile preparation of MoS2@Kaolin composite by one-step hydrothermal method for efficient removal of Pb(II) [J]. Journal of Hazardous Materials, 2021, 405: 124261. doi: 10.1016/j.jhazmat.2020.124261
[41] KUMAR N, FOSSO-KANKEU E, RAY S S. Achieving controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(II) from aquatic systems [J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19141-19155.
[42] ZHANG L, HE X, ZHOU Q X, et al. Fabrication of 1T-MoS2 nanosheets and the high-efficiency removal of toxic metals in aquatic systems: Performance and mechanisms [J]. Chemical Engineering Journal, 2020, 386: 123996. doi: 10.1016/j.cej.2019.123996
[43] DENG Y Y, HUANG S, LAIRD D A, et al. Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems [J]. Chemosphere, 2019, 218: 308-318. doi: 10.1016/j.chemosphere.2018.11.081
[44] KOSTENKO L S, TOMASHCHUK I I, KOVALCHUK T V, et al. Bentonites with grafted aminogroups: Synthesis, protolytic properties and assessing Cu(II), Cd(II) and Pb(II) adsorption capacity [J]. Applied Clay Science, 2019, 172: 49-56. doi: 10.1016/j.clay.2019.02.009
[45] WU J W, WANG T, ZHANG Y S, et al. The distribution of Pb(II)/Cd(II) adsorption mechanisms on biochars from aqueous solution: Considering the increased oxygen functional groups by HCl treatment [J]. Bioresource Technology, 2019, 291: 121859. doi: 10.1016/j.biortech.2019.121859
[46] ZHANG C, SHAN B Q, TANG W Z, et al. Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere [J]. Bioresource Technology, 2017, 238: 352-360. doi: 10.1016/j.biortech.2017.04.051