[1] |
SMEDLEY P L, BRITISH D G K. A review of the source, behaviour and distribution of arsenic in natural waters [J]. Applied Geochemistry, 2002, 17(10): 517-568.
|
[2] |
PODGORSKI J, BERG M. Global threat of arsenic in groundwater [J]. Science, 2020, 368(6493): 845-850. doi: 10.1126/science.aba1510
|
[3] |
MARTINSON C A, REDDY K J. Adsorption of arsenic(Ⅲ) and arsenic(Ⅴ) by cupric oxide nanoparticles [J]. Journal of Colloid and Interface Science, 2009, 336(2): 406-411. doi: 10.1016/j.jcis.2009.04.075
|
[4] |
KOCAR B D, INSKEEP W P. Photochemical oxidation of As(III) in ferrioxalate solutions [J]. Environmental Science & Technology, 2003, 37(8): 1581-1588.
|
[5] |
LEE H, CHOI W. Photocatalytic oxidation of arsenite in TiO2 suspension: Kinetics and mechanisms [J]. Environmental Science & Technology, 2002, 36(17): 3872-3878.
|
[6] |
YEO J, CHOI W. Iodide-mediated photooxidation of arsenite under 254 nm irradiation [J]. Environmental Science & Technology, 2009, 43(10): 3784-3788.
|
[7] |
SHUMLAS S L, SINGIREDDY S, THENUWARA A C, et al. Oxidation of arsenite to arsenate on birnessite in the presence of light [J]. Geochemical Transactions, 2004, 69(9): 726-732.
|
[8] |
王震华, 罗涛, 李进军, 等. 碱/抗坏血酸活化分子氧氧化水中As(Ⅲ) [J]. 环境科学学报, 2022, 42(7): 225-233.
WANG Z H, LUO T, LI J J, et al. Oxidation of As(Ⅲ) in water by alkaline/ascorbic acid activated molecular oxygen [J]. Acta Scientiae Circumstantiae, 2022, 42(7): 225-233(in Chinese).
|
[9] |
KEARNS D R. Physical and chemical properties of singlet molecular oxygen [J]. Chemical Reviews, 1971, 71(4): 395-427. doi: 10.1021/cr60272a004
|
[10] |
HUANG R, CHOE E, MIN D B. Kinetics for singlet oxygen formation by riboflavin photosensitization and the reaction between riboflavin and singlet oxygen [J]. Journal of Food Science, 2006, 69: 44.
|
[11] |
TANIELIAN C, HEINRICH G. Effect of aggregation on the hematoporphyrinsensitized production of singlet molecular oxygen [J]. Photochemistry and Photobiology, 1995, 61(2): 131-135. doi: 10.1111/j.1751-1097.1995.tb03950.x
|
[12] |
TANIELIAN C, WOLFF C, ESCH M. Singlet oxygen production in water: Aggregation and charge-transfer effects [J]. The Journal of Physical Chemistry, 1996, 100(16): 6555-6560. doi: 10.1021/jp952107s
|
[13] |
RONZANI F, TRIVELLA A, ARZOUMANIAN E, et al. Comparison of the photophysical properties of three phenothiazine derivatives: Transient detection and singlet oxygen production [J]. Photochemical & Photobiological Sciences, 2013, 12(12): 2160-2169.
|
[14] |
刘德启, 汪守建, 江飞. 均相亚甲基蓝光敏氧化法处理造纸废水研究 [J]. 水处理技术, 2004, 30(5): 273-275.
LIU D Q, WANG S J, JIANG F. Treatment of paper-making wastewater by methyleneblue photochemical method [J]. Technology of Water Treatment, 2004, 30(5): 273-275(in Chinese).
|
[15] |
BONNEAU R, JOUSSOT DUBIEN J, FAURE J. Mechanism of photoreduction of thiazine dyes by edta studied by flash‐photolysis‐I [J]. Photochemistry and Photobiology, 1973, 17(5): 313-319. doi: 10.1111/j.1751-1097.1973.tb06359.x
|
[16] |
LEE S K, MILLS A. Novel photochemistry of leuco-methylene blue [J]. Chemical Communications, 2003(18): 2366-2367. doi: 10.1039/b307228b
|
[17] |
LUO T, WANG H, CHEN L, et al. Visible light-driven oxidation of arsenite, sulfite and thiazine dyes: A new strategy for using waste to treat waste [J]. Journal of Cleaner Production, 2021, 280: 124374. doi: 10.1016/j.jclepro.2020.124374
|
[18] |
FRIDOVICH I, HANDLER P. Detection of free radicals in illuminated dye solutions by the initiation of sulfite oxidation [J]. The Journal of Biological Chemistry, 1960, 235(6): 1835-1838. doi: 10.1016/S0021-9258(19)76891-4
|
[19] |
韩昌序, 于海艳, 马利民. 抗坏血酸活化过硫酸盐降解水体中的阿特拉津 [J]. 环境科技, 2021, 34(2): 33-37.
HAN C X, YU H Y, MA L M. Degradation of atrazine in water by ascorbic acid activated persulfate [J]. Environmental Science and Technology, 2021, 34(2): 33-37(in Chinese).
|
[20] |
CAO M H, HOU Y Z, ZHANG E, et al. Ascorbic acid induced activation of persulfate for pentachlorophenol degradation [J]. Chemosphere, 2019, 229: 200-205. doi: 10.1016/j.chemosphere.2019.04.135
|
[21] |
BUETTNER G R, DOHERTY T P, BANNISTER T D. Hydrogen peroxide and hydroxyl radical formation by methylene blue in the presence of ascorbic acid [J]. Radiation and Environmental Biophysics, 1984, 23(4): 235-243. doi: 10.1007/BF01407595
|
[22] |
LUO T, PENG Y, CHEN L, et al. Metal-free electro-activated sulfite process for As(Ⅲ) oxidation in water using graphite electrodes [J]. Environmental Science & Technology, 2020, 54(16): 10261-10269.
|
[23] |
MILLS A, WANG J. Photobleaching of methylene blue sensitised by TiO2 : An ambiguous system? [J]. Journal of Photochemistry and Photobiology A:Chemistry, 1999, 127(1-3): 123-134. doi: 10.1016/S1010-6030(99)00143-4
|
[24] |
BOLOBAJEV J, TRAPIDO M, GOI A. Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid [J]. Chemical Engineering Journal, 2015, 281: 566-574. doi: 10.1016/j.cej.2015.06.115
|
[25] |
LEI Y, ZHANG H, WANG J W, et al. Rapid and continuous oxidation of organic contaminants with ascorbic acid and a modified ferric/persulfate system [J]. Chemical Engineering Journal, 2015, 270: 73-79. doi: 10.1016/j.cej.2015.02.014
|
[26] |
李苏奇, 刘子正, 王宇楠, 等. 单线态氧氧化水中对氨基苯胂酸的研究 [J]. 环境科学学报, 2016, 36(8): 2852-2858.
LI S Q, LIU Z Z, WANG Y N, et al. The oxidation of p-arsanilic acid by singlet oxygen in water [J]. Acta Scientiae Circumstantiae, 2016, 36(8): 2852-2858(in Chinese).
|
[27] |
MECH J, GRELA M A, SZACIŁOWSKI K. Ground and excited state properties of alizarin and its isomers [J]. Dyes and Pigments, 2014, 103: 202-213. doi: 10.1016/j.dyepig.2013.12.009
|