[1] KARLÉN W. Global temperature forced by solar irradiation and greenhouse gases? [J]. Ambio, 2001, 30(6): 349-350. doi: 10.1579/0044-7447-30.6.349
[2] IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
[3] XIAO Q T, XU X F, DUAN H T, et al. Eutrophic Lake Taihu as a significant CO2 source during 2000-2015 [J]. Water Research, 2020, 170: 115331. doi: 10.1016/j.watres.2019.115331
[4] BARTOSIEWICZ M, MARANGER R, PRZYTULSKA A, et al. Effects of phytoplankton blooms on fluxes and emissions of greenhouse gases in a eutrophic lake [J]. Water Research, 2021, 196: 116985. doi: 10.1016/j.watres.2021.116985
[5] SANTOSO A B, HAMILTON D P, SCHIPPER L A, et al. High contribution of methane in greenhouse gas emissions from a eutrophic lake: A mass balance synthesis [J]. New Zealand Journal of Marine and Freshwater Research, 2021, 55(3): 411-430. doi: 10.1080/00288330.2020.1798476
[6] MIAO Y Q, HUANG J, DUAN H T, et al. Spatial and seasonal variability of nitrous oxide in a large freshwater lake in the lower reaches of the Yangtze River, China [J]. Science of the Total Environment, 2020, 721: 137716. doi: 10.1016/j.scitotenv.2020.137716
[7] 闫兴成, 张重乾, 季铭, 等. 富营养化湖泊夏季表层水体温室气体浓度及其影响因素 [J]. 湖泊科学, 2018, 30(5): 1420-1428. doi: 10.18307/2018.0523 YAN X C, ZHANG Z Q, JI M, et al. Concentration of dissolved greenhouse gas and its influence factors in the summer surface water of eutrophic lake [J]. Journal of Lake Sciences, 2018, 30(5): 1420-1428(in Chinese). doi: 10.18307/2018.0523
[8] 邓焕广, 张菊, 刘浩志, 等. 不同营养水平城市水体温室气体溶存特征及影响因素研究[J]. 聊城大学学报(自然科学版), 2022, 35(5):103-110. DENG H G, ZHANG J, LIU H Z, et al. Characteristics and the influencing factors of dissolved concentrations of greenhouse gases in urban water bodies at different nutrient levels[J]. Journal of Liaocheng University (Natural Science Edition), 2022, 35(5):103-110(in Chinese).
[9] 刘臻婧, 肖启涛, 胡正华, 等. 引江济太对太湖贡湖湾氧化亚氮通量的影响 [J]. 中国环境科学, 2020, 40(12): 5229-5236. LIU Z J, XIAO Q T, HU Z H, et al. Effects of water diversion from Yangtze River to Lake Taihu on N2O flux in Gonghu Bay, Lake Taihu [J]. China Environmental Science, 2020, 40(12): 5229-5236(in Chinese).
[10] 张萍, 张菊, 邓焕广, 等. 南四湖菹草对上覆水和表层沉积物中汞和砷的富集特征 [J]. 环境化学, 2022, 41(11): 3589-3598. doi: 10.7524/j.issn.0254-6108.2021071402 ZHANG P, ZHANG J, DENG H G, et al. Enrichment characteristics of mercury and arsenic by Potamogeton crispus in the overlying water and surface sediment of Nansi Lake [J]. Environmental Chemistry, 2022, 41(11): 3589-3598(in Chinese). doi: 10.7524/j.issn.0254-6108.2021071402
[11] 曹起孟, 刘涛, 张菊, 等. 春季南四湖表层沉积物中生物硅的分布及其影响因素 [J]. 环境化学, 2022, 41(7): 2299-2308. doi: 10.7524/j.issn.0254-6108.2021112203 CAO Q M, LIU T, ZHANG J, et al. Study on the distribution and influencing factors of biogenic silica in surface sediments of Nansi Lake in spring [J]. Environmental Chemistry, 2022, 41(7): 2299-2308(in Chinese). doi: 10.7524/j.issn.0254-6108.2021112203
[12] 张慧, 郭文建, 刘绍丽, 等. 南四湖和东平湖表层水体中抗生素污染特征和风险评价 [J]. 环境化学, 2020, 39(12): 3279-3287. doi: 10.7524/j.issn.0254-6108.2019091002 ZHANG H, GUO W J, LIU S L, et al. Contamination characteristics and risk assessment of antibiotics in surface water of Nansi Lake and Dongping Lake [J]. Environmental Chemistry, 2020, 39(12): 3279-3287(in Chinese). doi: 10.7524/j.issn.0254-6108.2019091002
[13] LIU Y, YANG L Y, JIANG W. Qualitative and quantitative analysis of the relationship between water pollution and economic growth: A case study in Nansi Lake catchment, China [J]. Environmental Science and Pollution Research International, 2020, 27(4): 4008-4020. doi: 10.1007/s11356-019-07005-w
[14] DIVYA K R, ZHAO S S, CHEN Y S, et al. A comparison of zooplankton assemblages in Nansi Lake and Hongze Lake, potential influences of the East Route of the South-to-North Water Transfer Project, China [J]. Journal of Oceanology and Limnology, 2021, 39(2): 623-636. doi: 10.1007/s00343-020-9288-1
[15] ZHANG B L, CUI B H, ZHANG S M, et al. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China [J]. Environmental Science and Pollution Research International, 2018, 25(19): 19101-19113. doi: 10.1007/s11356-018-1956-8
[16] 陈永根, 白晓华, 李香华, 等. 中国8大湖泊冬季水-气界面甲烷通量初步研究 [J]. 湖泊科学, 2007, 19(1): 11-17. doi: 10.18307/2007.0102 CHEN Y G, BAI X H, LI X H, et al. A primary study of the methane flux on the water-air interface of eight lakes in winter, China [J]. Journal of Lake Sciences, 2007, 19(1): 11-17(in Chinese). doi: 10.18307/2007.0102
[17] 陈永根, 李香华, 胡志新, 等. 中国八大湖泊冬季水-气界面CO2通量 [J]. 生态环境, 2006, 15(4): 665-669. CHEN Y G, LI X H, HU Z X, et al. Carbon dioxide flux on the water-air interface of the eight lakes in China in winter [J]. Ecology and Environment, 2006, 15(4): 665-669(in Chinese).
[18] 张晓翠, 武周虎, 王瑜, 等. 南四湖湖区富营养化变化趋势与影响因素分析 [J]. 青岛理工大学学报, 2020, 41(1): 81-87. ZHANG X C, WU Z H, WANG Y, et al. Analysis of the eutrophication variation trends and influencing factors in Nansi Lake area [J]. Journal of Qingdao University of Technology, 2020, 41(1): 81-87(in Chinese).
[19] 邓焕广, 张智博, 刘涛, 等. 城市湖泊不同水生植被区水体温室气体溶存浓度及其影响因素 [J]. 湖泊科学, 2019, 31(4): 1055-1063. doi: 10.18307/2019.0409 DENG H G, ZHANG Z B, LIU T, et al. Dissolved greenhouse gas concentrations and the influencing factors in different vegetation zones of an urban lake [J]. Journal of Lake Sciences, 2019, 31(4): 1055-1063(in Chinese). doi: 10.18307/2019.0409
[20] 魏复盛主编. 国家环境保护总局, 水和废水监测分析方法编委会编. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. WEI F S. State Environmental Protection Administration, Water and wastewater monitoring and analysis methods[M]. 4thed. Beijing: China Environmental Science Press, 2002(in Chinese).
[21] WANG D Q, CHEN Z L, SUN W W, et al. Methane and nitrous oxide concentration and emission flux of Yangtze Delta plain river net [J]. Science in China Series B:Chemistry, 2009, 52(5): 652-661. doi: 10.1007/s11426-009-0024-0
[22] YU Z J, DENG H G, WANG D Q, et al. Nitrous oxide emissions in the Shanghai River network: Implications for the effects of urban sewage and IPCC methodology [J]. Global Change Biology, 2013, 19(10): 2999-3010. doi: 10.1111/gcb.12290
[23] DEEMER B R, HOLGERSON M A. Drivers of methane flux differ between lakes and reservoirs, complicating global upscaling efforts [J]. Journal of Geophysical Research:Biogeosciences, 2021, 126(4): e2019JG005600.
[24] 胡蓓蓓, 谭永洁, 王东启, 等. 冬季平原河网水体溶存甲烷和氧化亚氮浓度特征及排放通量 [J]. 中国科学:化学, 2013, 43(7): 919-929. HU B B, TAN Y J, WANG D Q, et al. Methane and nitrous oxide dissolved concentration and emission flux of plain river network in winter [J]. Scientia Sinica(Chimica), 2013, 43(7): 919-929(in Chinese).
[25] 王雪竹, 刘佳, 牛凤霞, 等. 基于走航高频监测的水库冬季水体溶解甲烷浓度分布: 以湖北西北口水库为例 [J]. 湖泊科学, 2021, 33(5): 1564-1573. doi: 10.18307/2021.0524 WANG X Z, LIU J, NIU F X, et al. Dissolved methane concentration distribution of reservoir in winter based on the underway high-resolution monitoring: A case study of the Xibeikou Reservoir in Hubei Province [J]. Journal of Lake Sciences, 2021, 33(5): 1564-1573(in Chinese). doi: 10.18307/2021.0524
[26] 刘涛. 东平湖优势水生植物对水体氮转化的影响[D]. 聊城: 聊城大学, 2021. LIU T. Effects of dominant aquatic plants on nitrogen transformation in lake Dongping[D]. Liaocheng: Liaocheng University, 2021(in Chinese).
[27] 李香华. 太湖水-气界面温室气体通量及时空变化特征研究[D]. 南京: 河海大学, 2005. LI X H. Study of the greenhouse gas flux of water-air interface and its spatio-temporal change in Taihu Lake[D]. Nanjing: Hohai University, 2005(in Chinese).
[28] 林茂. 鄱阳湖水-气界面温室气体通量研究[D]. 北京: 北京林业大学, 2012. LIN M. Greenhouse gas fluxes on the water-air interface of Poyang Lake[D]. Beijing: Beijing Forestry University, 2012(in Chinese).
[29] WANG G Q, XIA X H, LIU S D, et al. Distinctive patterns and controls of nitrous oxide concentrations and fluxes from urban inland waters [J]. Environmental Science & Technology, 2021, 55(12): 8422-8431.
[30] WANG G Q, XIA X H, LIU S D, et al. Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions [J]. Water Research, 2021, 189: 116654. doi: 10.1016/j.watres.2020.116654
[31] XIAO Q T, DUAN H T, QI T C, et al. Environmental investments decreased partial pressure of CO2 in a small eutrophic urban lake: Evidence from long-term measurements [J]. Environmental Pollution, 2020, 263: 114433. doi: 10.1016/j.envpol.2020.114433
[32] VAN BERGEN T, BARROS N, MENDONCA R, et al. Seasonal and diel variation in greenhouse gas emissions from an urban pond and its major drivers [J]. Limnology and Oceanography, 2019, 64(5): 2129-2139. doi: 10.1002/lno.11173
[33] XING Y P, XIE P, YANG H, et al. Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China [J]. Atmospheric Environment, 2005, 39(30): 5532-5540. doi: 10.1016/j.atmosenv.2005.06.010
[34] FREYMOND C V, WENK C B, FRAME C H, et al. Year-round N2O production by benthic NOx reduction in a monomictic south-alpine lake [J]. Biogeosciences, 2013, 10(12): 8373-8383. doi: 10.5194/bg-10-8373-2013
[35] 杨平, 仝川, 何清华, 等. 闽江口养殖塘水-大气界面温室气体通量日进程特征 [J]. 环境科学, 2012, 33(12): 4194-4204. YANG P, TONG C, HE Q H, et al. Diurnal variations of greenhouse gas fluxes at the water-air interface of aquaculture ponds in the Min River Estuary [J]. Environmental Science, 2012, 33(12): 4194-4204(in Chinese).
[36] 张力, 张振华, 高岩, 等. 不同水生植物对富营养化水体释放气体的影响 [J]. 生态与农村环境学报, 2014, 30(6): 736-743. ZHANG L, ZHANG Z H, GAO Y, et al. Effect of aquatic plants on emission of gases from eutrophic water [J]. Journal of Ecology and Rural Environment, 2014, 30(6): 736-743(in Chinese).
[37] KLÜBER H D, CONRAD R. Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil [J]. FEMS Microbiology Ecology, 1998, 25(3): 301-318. doi: 10.1111/j.1574-6941.1998.tb00482.x
[38] 曾从盛, 王维奇, 仝川. 不同电子受体及盐分输入对河口湿地土壤甲烷产生潜力的影响 [J]. 地理研究, 2008, 27(6): 1321-1330. ZENG C S, WANG W Q, TONG C. Effects of different exogenous electron acceptors and salt import on methane production potential of estuarine marsh soil [J]. Geographical Research, 2008, 27(6): 1321-1330(in Chinese).
[39] MA Y C, SUN L Y, LIU C Y, et al. A comparison of methane and nitrous oxide emissions from inland mixed-fish and crab aquaculture ponds [J]. Science of the Total Environment, 2018, 637/638: 517-523. doi: 10.1016/j.scitotenv.2018.05.040
[40] PEACOCK M, AUDET J, BASTVIKEN D, et al. Small artificial waterbodies are widespread and persistent emitters of methane and carbon dioxide [J]. Global Change Biology, 2021, 27(20): 5109-5123. doi: 10.1111/gcb.15762