[1] VIJGEN J, DE BORST B, WEBER R, et al. HCH and lindane contaminated sites: European and global need for a permanent solution for a long-time neglected issue[J]. Environmental Pollution, 2019, 248: 696-705. doi: 10.1016/j.envpol.2019.02.029
[2] 赵玲, 滕应, 骆永明. 我国有机氯农药场地污染现状与修复技术研究进展[J]. 土壤, 2018, 50(3): 435-445. doi: 10.13758/j.cnki.tr.2018.03.001
[3] TANG M, XU C, CHEN K, et al. Hexachlorocyclohexane exposure alters the microbiome of colostrum in Chinese breastfeeding mothers[J]. Environmental Pollution, 2019, 254: 112900. doi: 10.1016/j.envpol.2019.07.068
[4] MA Y, YUN X, RUAN Z, et al. Review of hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) contamination in Chinese soils[J]. Science of The Total Environment, 2020, 749: 141212. doi: 10.1016/j.scitotenv.2020.141212
[5] 葛锋, 张转霞, 扶恒,等. 我国有机污染场地现状分析及展望[J]. 土壤, 2021, 53(6): 1132-1141. doi: 10.13758/j.cnki.tr.2021.06.005
[6] 胡枭, 樊耀波, 王敏健. 影响有机污染物在土壤中的迁移, 转化行为的因素[J]. 环境科学进展, 1999(5): 14-22.
[7] LIU Y, WU L, KOHLI P, et al. Enantiomer and carbon isotope fractionation of α-hexachlorocyclohexane by Sphingobium indicum strain B90A and the corresponding enzymes[J]. Environmental Science & Technology, 2019, 53(15): 8715-8724.
[8] LIU Y, LIU J, RENPENNING J, et al. Dual C–Cl isotope analysis for characterizing the reductive dechlorination of α-and γ-hexachlorocyclohexane by two Dehalococcoides mccartyi strains and an enrichment culture[J]. Environmental Science & Technology, 2020, 54(12): 7250-7260.
[9] 刘佳, 黄振友, 卜婧函. 单体稳定同位素分析在有机物降解中的应用研究进展[J]. 环境化学, 2020(10): 2722-2732. doi: 10.7524/j.issn.0254-6108.2020051104
[10] BASHIR S, HITZFELD K L, GEHRE M, et al. Evaluating degradation of hexachlorcyclohexane (HCH) isomers within a contaminated aquifer using compound-specific stable carbon isotope analysis (CSIA)[J]. Water Research, 2015, 71: 187-196. doi: 10.1016/j.watres.2014.12.033
[11] SAUNDERS JR W H. Heavy atom isotope effects in elimination reactions. An ab initio study[J]. Croatica Chemica Acta, 2001, 74(3): 575-591.
[12] SCHMIDT T C, ZWANK L, ELSNER M, et al. Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges[J]. Analytical and bioanalytical chemistry, 2004, 378: 283-300. doi: 10.1007/s00216-003-2350-y
[13] NIJENHUIS I, RICHNOW H H. Stable isotope fractionation concepts for characterizing biotransformation of organohalides[J]. Current opinion in biotechnology, 2016, 41: 108-113. doi: 10.1016/j.copbio.2016.06.002
[14] PHILLIPS T M , SEECH A G , LEE H ,et al. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms[J]. Biodegradation, 2005, 16(4): 363-392. doi: 10.1007/s10532-004-2413-6
[15] BASHIR S, FISCHER A, NIJENHUIS I, et al. Enantioselective carbon stable isotope fractionation of hexachlorocyclohexane during aerobic biodegradation by Sphingobium spp[J]. Environmental Science & Technology, 2013, 47(20): 11432-11439.
[16] LIU Y, BASHIR S, STOLLBERG R, et al. Compound specific and enantioselective stable isotope analysis as tools to monitor transformation of hexachlorocyclohexane (HCH) in a complex aquifer system[J]. Environmental Science & Technology, 2017, 51(16): 8909-8916.
[17] GARG N, BALA K, LAL R. Sphingobium lucknowense sp. nov. , a hexachlorocyclohexane (HCH)-degrading bacterium isolated from HCH-contaminated soil [J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt 3): 618-623.
[18] KOHLI P, DUA A, SANGWAN N, et al. Draft genome sequence of sphingobium ummariense strain RL-3, a hexachlorocyclohexane-degrading bacterium[J]. Genome Announcements, 2013, 1(6): 1-2.
[19] KUMAR SINGH A, SANGWAN N, SHARMA A, et al. Draft genome sequence of sphingobium quisquiliarum strain P25T, a novel hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite[J]. Genome Announcements, 2013, 1(5): 1-2.
[20] HORST A, RENPENNING J, RICHNOW H-H, et al. Compound specific stable chlorine isotopic analysis of volatile aliphatic compounds using gas chromatography hyphenated with multiple collector inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2017, 89(17): 9131-9138. doi: 10.1021/acs.analchem.7b01875
[21] RENPENNING J, HORST A, SCHMIDT M, et al. Online isotope analysis of 37Cl/35Cl universally applied for semi-volatile organic compounds using GC-MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 314-321. doi: 10.1039/C7JA00404D
[22] WU L, MOSES S, LIU Y, et al. A concept for studying the transformation reaction of hexachlorocyclohexanes in food webs using multi-element compound-specific isotope analysis[J]. Analytica Chimica Acta, 2019, 1064: 56-64. doi: 10.1016/j.aca.2019.03.030
[23] 王志鹏, 车子良, 马新雨. 酶促反应动力学教学刍议: 米氏方程衍生公式与图像[J]. 化学教育, 2021, 42(8): 105-110.
[24] ELSNER M, ZWANK L, HUNKELER D, et al. A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants[J]. Environmental Science & Technology, 2005, 39(18): 6896-6916.
[25] LAL R, PANDEY G, SHARMA P, et al. Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation[J]. Microbiology and Molecular Biology Reviews, 2010, 74(1): 58-80. doi: 10.1128/MMBR.00029-09
[26] SCHILLING I E, HESS R, BOLOTIN J, et al. Kinetic isotope effects of the enzymatic transformation of γ-hexachlorocyclohexane by the lindane dehydrochlorinase variants LinA1 and LinA2[J]. Environmental Science & Technology, 2019, 53(5): 2353-2363.
[27] QIAN Y, CHEN K, LIU Y, et al. Assessment of hexachlorcyclohexane biodegradation in contaminated soil by compound-specific stable isotope analysis[J]. Environmental Pollution, 2019, 254: 113008. doi: 10.1016/j.envpol.2019.113008
[28] LIU Y, FU J, WU L, et al. Characterization of hexachlorocyclohexane isomer dehydrochlorination by LinA1 and LinA2 using multi-element compound-specific stable isotope analysis[J]. Environmental Science & Technology, 2022, 56(23): 16848-16856.