[1] LIAN Z X, XU J K, WANG Z B, et al. Nanosecond laser-induced underwater superoleophobic and underoil superhydrophobic mesh for oil/water separation [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2018, 34(9): 2981-2988. doi: 10.1021/acs.langmuir.7b03986
[2] ZHANG W B, SHI Z, ZHANG F, et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux [J]. Advanced Materials, 2013, 25(14): 2071-2076. doi: 10.1002/adma.201204520
[3] YUAN J K, LIU X G, AKBULUT O, et al. Superwetting nanowire membranes for selective absorption [J]. Nature Nanotechnology, 2008, 3(6): 332-336. doi: 10.1038/nnano.2008.136
[4] CHEN C L, WENG D, MAHMOOD A, et al. Separation mechanism and construction of surfaces with special wettability for oil/water separation [J]. ACS Applied Materials & Interfaces, 2019, 11(11): 11006-11027.
[5] ZHANG W F, LIU N, CAO Y Z, et al. Superwetting porous materials for wastewater treatment: From immiscible oil/water mixture to emulsion separation [J]. Advanced Materials Interfaces, 2017, 4(10): 1600029. doi: 10.1002/admi.201700029
[6] GUHA I F, VARANASI K K. Separating nanoscale emulsions: Progress and challenges to date [J]. Current Opinion in Colloid & Interface Science, 2018, 36: 110-117.
[7] BAO Z, CHEN D Y, LI N J, et al. Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation [J]. Journal of Membrane Science, 2020, 598: 117804. doi: 10.1016/j.memsci.2019.117804
[8] FAN J B, SONG Y Y, WANG S T, et al. Directly coating hydrogel on filter paper for effective oil–water separation in highly acidic, alkaline, and salty environment [J]. Advanced Functional Materials, 2015, 25(33): 5368-5375. doi: 10.1002/adfm.201501066
[9] LIU M J, WANG S T, JIANG L. Nature-inspired superwettability systems [J]. Nature Reviews Materials, 2017, 2(7): 1-17.
[10] ZHANG M J, MA W J, WU S T, et al. Electrospun frogspawn structured membrane for gravity-driven oil-water separation [J]. Journal of Colloid and Interface Science, 2019, 547: 136-144. doi: 10.1016/j.jcis.2019.03.099
[11] LUO W J, SUN D W, CHEN S S, et al. Robust microcapsules with durable superhydrophobicity and superoleophilicity for efficient oil–water separation [J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57547-57559.
[12] SHAMI Z, DELBINA S, AMININASAB S M. Wool-like fibrous nonwoven mesh with ethanol-triggered transition between antiwater and antioil superwetting states for immiscible and emulsified light oil–water separation [J]. Langmuir, 2019, 35(32): 10491-10504. doi: 10.1021/acs.langmuir.9b01032
[13] YIN X L, YU S R, WANG L Y, et al. Dual-functional underliquid superhydrophobic and superoleophobic stainless steel mesh decorated with Ni3S2 nanorods for continuous oil/water separation [J]. Surface and Coatings Technology, 2022, 434: 128177. doi: 10.1016/j.surfcoat.2022.128177
[14] ZHANG L H, YANG X D, JIANG B, et al. Superhydrophilic and underwater superoleophobic Ti foam with robust nanoarray structures of TiO2 for effective oil-in-water emulsion separation [J]. Separation and Purification Technology, 2020, 252: 117437. doi: 10.1016/j.seppur.2020.117437
[15] ZHANG J, ZHANG L, ZHAO J G, et al. A facile and mild strategy to fabricate an underwater superoleophobic and underoil superhydrophobic mesh with outstanding anti-viscous oil-fouling properties for switchable high viscosity oil/water separation [J]. Green Chemistry, 2019, 21(18): 5080-5089. doi: 10.1039/C9GC02129A
[16] GHASEMLOU M, DAVER F, IVANOVA E P, et al. Bio-inspired sustainable and durable superhydrophobic materials: From nature to market [J]. Journal of Materials Chemistry A, 2019, 7(28): 16643-16670. doi: 10.1039/C9TA05185F
[17] ELAKKIYA S, ARTHANAREESWARAN G. Evaluation of membrane tailored with biocompatible halloysite‒polyaniline nanomaterial for efficient removal of carcinogenic disinfection by‒products precursor from water [J]. Environmental Research, 2022, 204: 112408. doi: 10.1016/j.envres.2021.112408
[18] NAYAB S S, ABBAS M A, MUSHTAQ S, et al. Anti-foulant ultrafiltration polymer composite membranes incorporated with composite activated carbon/chitosan and activated carbon/thiolated chitosan with enhanced hydrophilicity [J]. Membranes, 2021, 11(11): 827. doi: 10.3390/membranes11110827
[19] XUE J J, XU M J, GAO J M, et al. Multifunctional porphyrinic Zr-MOF composite membrane for high-performance oil-in-water separation and organic dye adsorption/photocatalysis [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 628: 127288. doi: 10.1016/j.colsurfa.2021.127288
[20] KRASIAN T, PUNYODOM W, WORAJITTIPHON P. A hybrid of 2D materials (MoS2 and WS2) as an effective performance enhancer for poly(lactic acid) fibrous mats in oil adsorption and oil/water separation [J]. Chemical Engineering Journal, 2019, 369: 563-575. doi: 10.1016/j.cej.2019.03.092
[21] GAO X F, XU L P, XUE Z X, et al. Dual-scaled porous nitrocellulose membranes with underwater superoleophobicity for highly efficient oil/water separation [J]. Advanced Materials, 2014, 26(11): 1771-1775. doi: 10.1002/adma.201304487
[22] LI F R, KONG W T, ZHAO X Z, et al. Multifunctional TiO2-based superoleophobic/superhydrophilic coating for oil–water separation and oil purification [J]. ACS Applied Materials & Interfaces, 2020, 12(15): 18074-18083.
[23] CHEN X, ZHANG J Y, CHEN X Y, et al. Reduced graphene oxide-doped porous thermoplastic polyurethane sponges for highly efficient oil/water separation [J]. ACS Omega, 2023, 8(11): 10487-10492. doi: 10.1021/acsomega.3c00121
[24] CHEN C L, CHEN L, CHEN S, et al. Preparation of underwater superoleophobic membranes via TiO2 electrostatic self-assembly for separation of stratified oil/water mixtures and emulsions [J]. Journal of Membrane Science, 2020, 602: 117976. doi: 10.1016/j.memsci.2020.117976
[25] WAHID F, ZHAO X Q, CUI J X, et al. Fabrication of bacterial cellulose with TiO2-ZnO nanocomposites as a multifunctional membrane for water remediation [J]. Journal of Colloid and Interface Science, 2022, 620: 1-13. doi: 10.1016/j.jcis.2022.03.108
[26] FENG Q Y, ZHAN Y Q, YANG W, et al. Bi-functional super-hydrophilic/underwater super-oleophobic 2D lamellar Ti3C2Tx MXene/poly (arylene ether nitrile) fibrous composite membrane for the fast purification of emulsified oil and photodegradation of hazardous organics [J]. Journal of Colloid and Interface Science, 2022, 612: 156-170. doi: 10.1016/j.jcis.2021.12.160
[27] WANG M K, ZHANG Z Z, WANG Y L, et al. Durable superwetting materials through layer-by-layer assembly: Multiple separations towards water/oil mixtures, water-in-oil and oil-in-water emulsions [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 571: 142-150.
[28] YANG S L, SHA S M, LU H, et al. Graphene oxide and reduced graphene oxide coated cotton fabrics with opposite wettability for continuous oil/water separation [J]. Separation and Purification Technology, 2021, 259: 118095. doi: 10.1016/j.seppur.2020.118095
[29] YANG S L, LI J Z, ZHEN C, et al. Graphene-based melamine sponges with reverse wettability for oil/water separation through absorption and filtration [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107543. doi: 10.1016/j.jece.2022.107543
[30] CAO G L, WANG Y G, WANG C Y, et al. A dually prewetted membrane for continuous filtration of water-in-light oil, oil-in-water, and water-in-heavy oil multiphase emulsion mixtures [J]. Journal of Materials Chemistry A, 2019, 7(18): 11305-11313. doi: 10.1039/C9TA01889A
[31] LI H N, YANG J, XU Z K. Hollow fiber membranes with Janus surfaces for continuous deemulsification and separation of oil-in-water emulsions [J]. Journal of Membrane Science, 2020, 602: 117964. doi: 10.1016/j.memsci.2020.117964
[32] YUAN Y, WANG W, SHI Y Q, et al. The influence of highly dispersed Cu2O-anchored MoS2 hybrids on reducing smoke toxicity and fire hazards for rigid polyurethane foam [J]. Journal of Hazardous Materials, 2020, 382: 121028. doi: 10.1016/j.jhazmat.2019.121028
[33] ALI A, MANGRIO F A, CHEN X L, et al. Ultrathin MoS2 nanosheets for high-performance photoelectrochemical applications via plasmonic coupling with Au nanocrystals [J]. Nanoscale, 2019, 11(16): 7813-7824. doi: 10.1039/C8NR10320H
[34] NGUYEN E P, CAREY B J, OU J Z, et al. Electronic tuning of 2D MoS2 through surface functionalization [J]. Advanced Materials, 2015, 27(40): 6225-6229. doi: 10.1002/adma.201503163
[35] GUPTA A, ARUNACHALAM V, VASUDEVAN S. Liquid-phase exfoliation of MoS2 nanosheets: The critical role of trace water [J]. The Journal of Physical Chemistry Letters, 2016, 7(23): 4884-4890. doi: 10.1021/acs.jpclett.6b02405
[36] AREFI-OSKOUI S, KHATAEE A, SAFARPOUR M, et al. Modification of polyethersulfone ultrafiltration membrane using ultrasonic-assisted functionalized MoS2 for treatment of oil refinery wastewater [J]. Separation and Purification Technology, 2020, 238: 116495. doi: 10.1016/j.seppur.2019.116495
[37] LEI J, GUO Z G. PES asymmetric membrane for oil-in-water emulsion separation [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 626: 127096. doi: 10.1016/j.colsurfa.2021.127096
[38] SAMY O, ZENG S W, BIROWOSUTO M D, et al. A review on MoS2 properties, synthesis, sensing applications and challenges [J]. Crystals, 2021, 11(4): 355. doi: 10.3390/cryst11040355
[39] LIU Y, ZHAO Y C, ZHANG X B, et al. MoS2-based membranes in water treatment and purification [J]. Chemical Engineering Journal, 2021, 422: 130082. doi: 10.1016/j.cej.2021.130082
[40] BASRI H, ISMAIL A F, AZIZ M. Microstructure and anti-adhesion properties of PES/TAP/Ag hybrid ultrafiltration membrane [J]. Desalination, 2012, 287: 71-77. doi: 10.1016/j.desal.2011.09.031
[41] KUMAR N, FOSSO-KANKEU E, RAY S S. Achieving controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(Ⅱ) from aquatic systems [J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19141-19155.
[42] LI J H, TAO H C, ZHANG Y K, et al. Molybdenum disulfide/reduced graphene oxide nanocomposite with expanded interlayer spacing for sodium ion batteries [J]. Journal of the Electrochemical Society, 2019, 166(15): A3685-A3692. doi: 10.1149/2.0841915jes
[43] WAN Z T, LI D, JIAO Y L, et al. Bifunctional MoS2 coated melamine-formaldehyde sponges for efficient oil–water separation and water-soluble dye removal [J]. Applied Materials Today, 2017, 9: 551-559. doi: 10.1016/j.apmt.2017.09.013
[44] TANG G G, SUN J R, CHEN W, et al. Surfactant-assisted hydrothermal synthesis and tribological properties of flower-like MoS2 nanostructures [J]. Micro & Nano Letters, 2013, 8(3): 164-168.
[45] TANG G G, SUN J R, WEI C, et al. Synthesis and characterization of flowerlike MoS2 nanostructures through CTAB-assisted hydrothermal process [J]. Materials Letters, 2012, 86: 9-12. doi: 10.1016/j.matlet.2012.07.014
[46] HU X L, LU S C, TIAN J, et al. The selective deposition of MoS2 nanosheets onto (101) facets of TiO2 nanosheets with exposed (001) facets and their enhanced photocatalytic H2 production [J]. Applied Catalysis B:Environmental, 2019, 241: 329-337. doi: 10.1016/j.apcatb.2018.09.051
[47] VRUBEL H, MERKI D, HU X L. Hydrogen evolution catalyzed by MoS3 and MoS2 particles [J]. Energy & Environmental Science, 2012, 5(3): 6136-6144.
[48] ZHANG Z, MA X X, TANG J L. Porous NiMoO4−x/MoO2 hybrids as highly effective electrocatalysts for the water splitting reaction [J]. Journal of Materials Chemistry A, 2018, 6(26): 12361-12369. doi: 10.1039/C8TA03047B
[49] 卜利果. 二硫化钼—二氧化钛界面结构调控及可见光催化性能研究[D]. 开封: 河南大学, 2018. BU L G. Study on interface structure regulation and visible photocatalytic performance of molybdenum disulfide-titanium dioxide[D]. Kaifeng: Henan University, 2018 (in Chinese).
[50] CAO X C, MA J, SHI X H, et al. Effect of TiO2 nanoparticle size on the performance of PVDF membrane [J]. Applied Surface Science, 2006, 253(4): 2003-2010. doi: 10.1016/j.apsusc.2006.03.090
[51] AMINI M, RAMAZANI S A A, FAGHIHI M, et al. Preparation of nanostructured and nanosheets of MoS2 oxide using oxidation method [J]. Ultrasonics Sonochemistry, 2017, 39: 188-196. doi: 10.1016/j.ultsonch.2017.04.024
[52] 成敏敏. 氧化石墨烯(二硫化钼)/水性聚氨酯复合薄膜的研究[D]. 太原: 中北大学, 2018. CHENG M M. Study on graphene oxide (MoS2)/waterborne polyurethane composite film[D]. Taiyuan: North University of China, 2018 (in Chinese).
[53] MA J, TAN X, YU T, et al. Fabrication of g-C3N4/TiO2 hierarchical spheres with reactive{001}TiO2 crystal facets and its visible-light photocatalytic activity [J]. International Journal of Hydrogen Energy, 2016, 41(6): 3877-3887. doi: 10.1016/j.ijhydene.2015.12.191
[54] LIANG S, XIAO K, ZHANG S, et al. A facile approach to fabrication of super hydrophilic ultrafiltration membranes with surface-tailored nanoparticles [J]. Separation and Purification Technology, 2018, 203: 251-259. doi: 10.1016/j.seppur.2018.04.051
[55] WANG M, XU Z W, GUO Y L, et al. Engineering a super wettable polyolefin membrane for highly efficient oil/water separation with excellent self-cleaning and photo-catalysis degradation property [J]. Journal of Membrane Science, 2020, 611: 118409. doi: 10.1016/j.memsci.2020.118409
[56] PAN Z H, CAO S J, LI J F, et al. Anti-fouling TiO2 nanowires membrane for oil/water separation: Synergetic effects of wettability and pore size [J]. Journal of Membrane Science, 2019, 572: 596-606. doi: 10.1016/j.memsci.2018.11.056