[1] |
严燕, 黄蔷, 牟敬锋, 等. 深圳居民日常饮用水中双酚A的污染状况调查及暴露评估 [J]. 中国卫生检验杂志, 2016, 26(22): 3310-3312,3316.
YAN Y, HUANG Q, MU J F, et al. Investigation and exposure assessment of bisphenol A for drinking water in Shenzhen [J]. Chinese Journal of Health Laboratory Technology, 2016, 26(22): 3310-3312,3316(in Chinese).
|
[2] |
ANDALURI G, MANICKAVACHAGAM M, SURI R. Plastic toys as a source of exposure to bisphenol-A and phthalates at childcare facilities [J]. Environmental Monitoring and Assessment, 2018, 190(2): 65. doi: 10.1007/s10661-017-6438-9
|
[3] |
VASILJEVIC T, HARNER T. Bisphenol A and its analogues in outdoor and indoor air: Properties, sources and global levels [J]. The Science of the Total Environment, 2021, 789: 148013. doi: 10.1016/j.scitotenv.2021.148013
|
[4] |
FERRER-POLONIO E, ALVIM C B, FERNÁNDEZ-NAVARRO J, et al. Influence of bisphenol A occurrence in wastewaters on biomass characteristics and activated sludge process performance [J]. The Science of the Total Environment, 2021, 778: 146355. doi: 10.1016/j.scitotenv.2021.146355
|
[5] |
BHATNAGAR A, ANASTOPOULOS I. Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review [J]. Chemosphere, 2017, 168: 885-902. doi: 10.1016/j.chemosphere.2016.10.121
|
[6] |
WU L H, ZHANG X M, WANG F, et al. Occurrence of bisphenol S in the environment and implications for human exposure: A short review [J]. Science of the Total Environment, 2018, 615: 87-98. doi: 10.1016/j.scitotenv.2017.09.194
|
[7] |
YANG Y, OK Y S, KIM K H, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review [J]. Science of the Total Environment, 2017, 596/597: 303-320. doi: 10.1016/j.scitotenv.2017.04.102
|
[8] |
JALAL N, SURENDRANATH A R, PATHAK J L, et al. Bisphenol A (BPA) the mighty and the mutagenic [J]. Toxicology Reports, 2018, 5: 76-84. doi: 10.1016/j.toxrep.2017.12.013
|
[9] |
MARTÍN-LARA M A, CALERO M, RONDA A, et al. Adsorptive behavior of an activated carbon for bisphenol A removal in single and binary (bisphenol A—Heavy metal) solutions [J]. Water, 2020, 12(8): 2150. doi: 10.3390/w12082150
|
[10] |
ANA K M S, ESPINO M P. Occurrence and distribution of hormones and bisphenol A in Laguna Lake, Philippines [J]. Chemosphere, 2020, 256: 127122. doi: 10.1016/j.chemosphere.2020.127122
|
[11] |
WANG Y C, CHEN D Z, YU Y W, et al. Magnetic porous carbon nanopolyhedron modified rGO composites as recyclable sorbent for effective removal of bisphenol A from water [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105911. doi: 10.1016/j.jece.2021.105911
|
[12] |
HU Y, ZHU Q Q, YAN X T, et al. Occurrence, fate and risk assessment of BPA and its substituents in wastewater treatment plant: A review [J]. Environmental Research, 2019, 178: 108732. doi: 10.1016/j.envres.2019.108732
|
[13] |
WANG L, YUN J, ZHANG H X, et al. Degradation of Bisphenol A by ozonation in rotating packed bed: Effects of operational parameters and co-existing chemicals [J]. Chemosphere, 2021, 274: 129769. doi: 10.1016/j.chemosphere.2021.129769
|
[14] |
HAYAT K, MENHAS S, BUNDSCHUH J, et al. Microbial biotechnology as an emerging industrial wastewater treatment process for arsenic mitigation: A critical review [J]. Journal of Cleaner Production, 2017, 151: 427-438. doi: 10.1016/j.jclepro.2017.03.084
|
[15] |
ZHANG X Y, ZHANG H X, XIANG Y Y, et al. Synthesis of silver phosphate/graphene oxide composite and its enhanced visible light photocatalytic mechanism and degradation pathways of tetrabromobisphenol A [J]. Journal of Hazardous Materials, 2018, 342: 353-363. doi: 10.1016/j.jhazmat.2017.08.048
|
[16] |
SHAFEI A, RAMZY M M, HEGAZY A I, et al. The molecular mechanisms of action of the endocrine disrupting chemical bisphenol A in the development of cancer [J]. Gene, 2018, 647: 235-243. doi: 10.1016/j.gene.2018.01.016
|
[17] |
WANG J Q, ZHENG M, DENG Y, et al. Generality and diversity on the kinetics, toxicity and DFT studies of sulfate radical-induced transformation of BPA and its analogues [J]. Water Research, 2022, 219: 118506. doi: 10.1016/j.watres.2022.118506
|
[18] |
FAROOQ M U, JALEES M I, Qurat-ul-Ain, et al. Health risk assessment of endocrine disruptor bisphenol A leaching from plastic bottles of milk and soft drinks [J]. Environmental Science and Pollution Research, 2021, 28(40): 57090-57098. doi: 10.1007/s11356-021-14653-4
|
[19] |
DREOLIN N, AZNAR M, MORET S, et al. Development and validation of a LC-MS/MS method for the analysis of bisphenol a in polyethylene terephthalate [J]. Food Chemistry, 2019, 274: 246-253. doi: 10.1016/j.foodchem.2018.08.109
|
[20] |
BILAL M, IQBAL H M N, BARCELÓ D. Mitigation of bisphenol A using an array of laccase-based robust bio-catalytic cues - A review [J]. Science of the Total Environment, 2019, 689: 160-177. doi: 10.1016/j.scitotenv.2019.06.403
|
[21] |
MA Y, LIU H H, WU J X, et al. The adverse health effects of bisphenol A and related toxicity mechanisms [J]. Environmental Research, 2019, 176: 108575. doi: 10.1016/j.envres.2019.108575
|
[22] |
ABRAHAM A, CHAKRABORTY P. A review on sources and health impacts of bisphenol A [J]. Reviews on Environmental Health, 2020, 35(2): 201-210. doi: 10.1515/reveh-2019-0034
|
[23] |
RUSSO G, BARBATO F, MITA D G, et al. Occurrence of Bisphenol A and its analogues in some foodstuff marketed in Europe [J]. Food and Chemical Toxicology, 2019, 131: 110575. doi: 10.1016/j.fct.2019.110575
|
[24] |
CUI F P, YANG P, LIU C, et al. Urinary bisphenol A and its alternatives among pregnant women: Predictors and risk assessment [J]. Science of the Total Environment, 2021, 784: 147184. doi: 10.1016/j.scitotenv.2021.147184
|
[25] |
WANG H, LIU Z H, ZHANG J, et al. Insights into removal mechanisms of bisphenol A and its analogues in municipal wastewater treatment plants [J]. Science of the Total Environment, 2019, 692: 107-116. doi: 10.1016/j.scitotenv.2019.07.134
|
[26] |
LIU X M, SHI H H, XIE B, et al. Microplastics as both a sink and a source of bisphenol A in the marine environment [J]. Environmental Science & Technology, 2019, 53(17): 10188-10196.
|
[27] |
WANG J P, ZHANG M. Adsorption characteristics and mechanism of bisphenol A by magnetic biochar [J]. International Journal of Environmental Research and Public Health, 2020, 17(3): 1075. doi: 10.3390/ijerph17031075
|
[28] |
MPATANI F M, HAN R P, ARYEE A A, et al. Adsorption performance of modified agricultural waste materials for removal of emerging micro-contaminant bisphenol A: A comprehensive review [J]. Science of the Total Environment, 2021, 780: 146629. doi: 10.1016/j.scitotenv.2021.146629
|
[29] |
ABOOTALEBI JAHROMI F, MOORE F, KESHAVARZI B, et al. Bisphenol A (BPA) and polycyclic aromatic hydrocarbons (PAHs) in the surface sediment and bivalves from Hormozgan Province coastline in the Northern Persian Gulf: A focus on source apportionment [J]. Marine Pollution Bulletin, 2020, 152: 110941. doi: 10.1016/j.marpolbul.2020.110941
|
[30] |
邵晓玲, 马军. 松花江水中13种内分泌干扰物的初步调查 [J]. 环境科学学报, 2008, 28(9): 1910-1915. doi: 10.13671/j.hjkxxb.2008.09.010
SHAO X L, MA J. Preliminary investigation on 13 endocrine disrupting chemicals in the Songhua River [J]. Acta Scientiae Circumstantiae, 2008, 28(9): 1910-1915(in Chinese). doi: 10.13671/j.hjkxxb.2008.09.010
|
[31] |
JIN H B, ZHU L Y. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China [J]. Water Research, 2016, 103: 343-351. doi: 10.1016/j.watres.2016.07.059
|
[32] |
JIN X L, JIANG G B, HUANG G L, et al. Determination of 4-tert-octylphenol, 4-nonylphenol and bisphenol A in surface waters from the Haihe River in Tianjin by gas chromatography-mass spectrometry with selected ion monitoring [J]. Chemosphere, 2004, 56(11): 1113-1119. doi: 10.1016/j.chemosphere.2004.04.052
|
[33] |
WANG L, YING G G, CHEN F, et al. Monitoring of selected estrogenic compounds and estrogenic activity in surface water and sediment of the Yellow River in China using combined chemical and biological tools [J]. Environmental Pollution, 2012, 165: 241-249. doi: 10.1016/j.envpol.2011.10.005
|
[34] |
WANG W F, NDUNGU A W, WANG J. Monitoring of endocrine-disrupting compounds in surface water and sediments of the Three Gorges Reservoir region, China [J]. Archives of Environmental Contamination and Toxicology, 2016, 71(4): 509-517. doi: 10.1007/s00244-016-0319-z
|
[35] |
GONG J, RAN Y, CHEN D Y, et al. Occurrence and environmental risk of endocrine-disrupting chemicals in surface waters of the Pearl River, South China [J]. Environmental Monitoring and Assessment, 2009, 156(1): 199-210.
|
[36] |
YAN Z Y, LIU Y H, YAN K, et al. Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: Occurrence, distribution, source apportionment, and ecological and human health risk [J]. Chemosphere, 2017, 184: 318-328. doi: 10.1016/j.chemosphere.2017.06.010
|
[37] |
WU C X, HUANG X L, LIN J, et al. Occurrence and fate of selected endocrine-disrupting chemicals in water and sediment from an urban lake [J]. Archives of Environmental Contamination and Toxicology, 2015, 68(2): 225-236. doi: 10.1007/s00244-014-0087-6
|
[38] |
WU Z X, ZHAO D Y. Ordered mesoporous materials as adsorbents [J]. Chemical Communications, 2011, 47(12): 3332-3338. doi: 10.1039/c0cc04909c
|
[39] |
方梦祥, 姚鹏, 岑建孟, 等. 活性炭吸附处理含酚废水的研究进展 [J]. 化工进展, 2018, 37(2): 744-751.
FANG M X, YAO P, CEN J M, et al. Adsorption treatment of phenolic wastewater by activated carbon: A review [J]. Chemical Industry and Engineering Progress, 2018, 37(2): 744-751(in Chinese).
|
[40] |
蒋博龙, 史顺杰, 蒋海林, 等. 金属有机框架材料吸附处理苯酚污水机理研究进展 [J]. 化工进展, 2021, 40(8): 4525-4539. doi: 10.16085/j.issn.1000-6613.2020-1811
JIANG B L, SHI S J, JIANG H L, et al. Research progress in phenol adsorption mechanism over metal-organic framework from wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4525-4539(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1811
|
[41] |
ALHOKBANY N S, NAUSHAD M, KUMAR V, et al. Self-nitrogen doped carbons aerogel derived from waste cigarette butts (cellulose acetate) for the adsorption of BPA: Kinetics and adsorption mechanisms [J]. Journal of King Saud University - Science, 2020, 32(8): 3351-3358. doi: 10.1016/j.jksus.2020.09.021
|
[42] |
SUN Z Q, ZHAO L, LIU C H, et al. Fast adsorption of BPA with high capacity based on π-π electron donor-acceptor and hydrophobicity mechanism using an in-situ sp2 C dominant N-doped carbon [J]. Chemical Engineering Journal, 2020, 381: 122510. doi: 10.1016/j.cej.2019.122510
|
[43] |
de LIMA H H C, LLOP M E G, dos SANTOS MANIEZZO R, et al. Enhanced removal of bisphenol A using pine-fruit shell-derived hydrochars: Adsorption mechanisms and reusability [J]. Journal of Hazardous Materials, 2021, 416: 126167. doi: 10.1016/j.jhazmat.2021.126167
|
[44] |
孙刘鑫, 王培茗, 杨俊浩, 等. 离子强度对吸附有机污染物影响的研究进展 [J]. 化工进展, 2021, 40(6): 3239-3257. doi: 10.16085/j.issn.1000-6613.2020-1477
SUN L X, WANG P M, YANG J H, et al. Research progress on the effect of ionic strength on the removal of organic pollutants from wastewater by adsorbents [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3239-3257(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1477
|
[45] |
MENESES I P, NOVAES S D, DEZOTTI R S, et al. CTAB-modified carboxymethyl cellulose/bagasse cryogels for the efficient removal of bisphenol A, methylene blue and Cr(VI) ions: Batch and column adsorption studies [J]. Journal of Hazardous Materials, 2022, 421: 126804. doi: 10.1016/j.jhazmat.2021.126804
|
[46] |
ZHOU G Z, CAO Y Y, JIN Y Q, et al. Novel selective adsorption and photodegradation of BPA by molecularly imprinted sulfur doped nano-titanium dioxide [J]. Journal of Cleaner Production, 2020, 274: 122929. doi: 10.1016/j.jclepro.2020.122929
|
[47] |
MODI A, BELLARE J. Copper sulfide nanoparticles/carboxylated graphene oxide nanosheets blended polyethersulfone hollow fiber membranes: Development and characterization for efficient separation of oxybenzone and bisphenol A from water [J]. Polymer, 2019, 163: 57-67. doi: 10.1016/j.polymer.2018.12.040
|
[48] |
PAN Z L, YU F P, LI L, et al. Electrochemical microfiltration treatment of bisphenol A wastewater using coal-based carbon membrane [J]. Separation and Purification Technology, 2019, 227: 115695. doi: 10.1016/j.seppur.2019.115695
|
[49] |
CHEN Z H, LIU Z, HU J Q, et al. β-Cyclodextrin-modified graphene oxide membranes with large adsorption capacity and high flux for efficient removal of bisphenol A from water [J]. Journal of Membrane Science, 2020, 595: 117510. doi: 10.1016/j.memsci.2019.117510
|
[50] |
S E, G A, DAS D B. Embedding low-cost 1D and 2D iron pillared nanoclay to enhance the stability of polyethersulfone membranes for the removal of bisphenol A from water [J]. Separation and Purification Technology, 2021, 266: 118560. doi: 10.1016/j.seppur.2021.118560
|
[51] |
MOREIRA C G, MOREIRA M H, SILVA V M O C, et al. Treatment of Bisphenol A (BPA) in water using UV/H2O2 and reverse osmosis (RO) membranes: Assessment of estrogenic activity and membrane adsorption [J]. Water Science and Technology, 2019, 80(11): 2169-2178. doi: 10.2166/wst.2020.024
|
[52] |
ZAHARI A M, SHUO C W, SATHISHKUMAR P, et al. A reusable electrospun PVDF-PVP-MnO2 nanocomposite membrane for bisphenol A removal from drinking water [J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 5801-5811. doi: 10.1016/j.jece.2018.08.073
|
[53] |
HOU Z A, WEN Z B, WANG D D, et al. Bipolar jet electrospinning bi-functional nanofibrous membrane for simultaneous and sequential filtration of Cd2+ and BPA from water: Competition and synergistic effect [J]. Chemical Engineering Journal, 2018, 332: 118-130. doi: 10.1016/j.cej.2017.09.064
|
[54] |
NASSERI S, EBRAHIMI S, ABTAHI M, et al. Synthesis and characterization of polysulfone/graphene oxide nano-composite membranes for removal of bisphenol A from water [J]. Journal of Environmental Management, 2018, 205: 174-182.
|
[55] |
ZHAO Z Y, MUYLAERT K, SZYMCZYK A, et al. Harvesting microalgal biomass using negatively charged polysulfone patterned membranes: Influence of pattern shapes and mechanism of fouling mitigation [J]. Water Research, 2021, 188: 116530. doi: 10.1016/j.watres.2020.116530
|
[56] |
WANG Q, YANG C Y, ZHANG G S, et al. Photocatalytic Fe-doped TiO2/PSF composite UF membranes: Characterization and performance on BPA removal under visible-light irradiation [J]. Chemical Engineering Journal, 2017, 319: 39-47. doi: 10.1016/j.cej.2017.02.145
|
[57] |
MOUSSAVI G, ABBASZADEH HADDAD F. Bacterial peroxidase-mediated enhanced biodegradation and mineralization of bisphenol A in a batch bioreactor [J]. Chemosphere, 2019, 222: 549-555. doi: 10.1016/j.chemosphere.2019.01.190
|
[58] |
YUE W L, YIN C F, SUN L M, et al. Biodegradation of bisphenol-a polycarbonate plastic by Pseudoxanthomonas sp. strain NyZ600 [J]. Journal of Hazardous Materials, 2021, 416: 125775. doi: 10.1016/j.jhazmat.2021.125775
|
[59] |
TAGHIZADEH T, TALEBIAN-KIAKALAIEH A, JAHANDAR H, et al. Biodegradation of bisphenol A by the immobilized laccase on some synthesized and modified forms of zeolite Y [J]. Journal of Hazardous Materials, 2020, 386: 121950. doi: 10.1016/j.jhazmat.2019.121950
|
[60] |
RAMPINELLI J R, de MELO M P, ARBIGAUS A, et al. Production of Pleurotus sajor-caju crude enzyme broth and its applicability for the removal of bisphenol A [J]. Anais Da Academia Brasileira De Ciências, 2021, 93(1): e20191153.
|
[61] |
CYDZIK-KWIATKOWSKA A, ZIELIŃSKA M. Microbial composition of biofilm treating wastewater rich in bisphenol A [J]. Journal of Environmental Science and Health, Part A, 2018, 53(4): 385-392. doi: 10.1080/10934529.2017.1404326
|
[62] |
FERRO OROZCO A M, MORALES URREA D A, CONTRERAS E M, et al. Loss of bisphenol A removal ability of activated sludge in semi-continuous reactors (SCR) [J]. Journal of Environmental Chemical Engineering, 2020, 8(3): 103778. doi: 10.1016/j.jece.2020.103778
|
[63] |
HOU S Y, YANG P. BPA biodegradation driven by isolated strain SQ-2 and its metabolism mechanism elucidation [J]. Biochemical Engineering Journal, 2022, 185: 108540. doi: 10.1016/j.bej.2022.108540
|
[64] |
SARMA H, NAVA A R, MANRIQUEZ A M E, et al. Biodegradation of bisphenol A by bacterial consortia isolated directly from river sediments [J]. Environmental Technology & Innovation, 2019, 14: 100314.
|
[65] |
KYRILA G, KATSOULAS A, SCHORETSANITI V, et al. Bisphenol A removal and degradation pathways in microorganisms with probiotic properties [J]. Journal of Hazardous Materials, 2021, 413: 125363. doi: 10.1016/j.jhazmat.2021.125363
|
[66] |
WU J C, MA X N, LI C M, et al. A novel photon-enzyme cascade catalysis system based on hybrid HRP-CN/Cu3(PO4)2 nanoflowers for degradation of BPA in water [J]. Chemical Engineering Journal, 2022, 427: 131808. doi: 10.1016/j.cej.2021.131808
|
[67] |
张瑞阳, 王姝焱, 黎邦鑫, 等. 气相臭氧分解催化材料的研究进展 [J]. 材料导报, 2021, 35(21): 21037-21049.
ZHANG R Y, WANG S Y, LI B X, et al. Research progress of gaseous ozone decomposition catalysts [J]. Materials Reports, 2021, 35(21): 21037-21049(in Chinese).
|
[68] |
TIAN J, LI B B, QU R J, et al. Influence of anions on ozonation of bisphenol AF: Kinetics, reaction pathways, and toxicity assessment [J]. Chemosphere, 2022, 286: 131864. doi: 10.1016/j.chemosphere.2021.131864
|
[69] |
钱媛媛, 王永杰, 杨雪晶. 臭氧相关水处理工艺及其传质特征研究进展[J]. 化工进展, 2021, 40(增刊1): 411-425.
QIAN Y Y, WANG Y J, YANG X J. Application of ozone for water treatment and implication of mass transfer characteristics[J]. Chemical Industry and Engineering Progress, 2021, 40(Sup 1): 411-425 (in Chinese).
|
[70] |
HUANG Y X, YANG T T, LIANG M L, et al. Ni-Fe layered double hydroxides catalized ozonation of synthetic wastewater containing Bisphenol A and municipal secondary effluent [J]. Chemosphere, 2019, 235: 143-152. doi: 10.1016/j.chemosphere.2019.06.162
|
[71] |
MU J X, LI S Y, WANG J, et al. Efficient catalytic ozonation of bisphenol A by three-dimensional mesoporous CeOx-loaded SBA-16 [J]. Chemosphere, 2021, 278: 130412. doi: 10.1016/j.chemosphere.2021.130412
|
[72] |
缪倩倩, 孟冠华, 刘宝河, 等. 铜氧化物/D851树脂催化臭氧氧化降解双酚A [J]. 环境工程学报, 2019, 13(7): 1557-1564.
MIAO Q Q, MENG G H, LIU B H, et al. Degradation of bisphenol A through catalytic ozonation process with copper oxide/D851 resin [J]. Chinese Journal of Environmental Engineering, 2019, 13(7): 1557-1564(in Chinese).
|
[73] |
LI S, WU Y N, ZHENG Y J, et al. Free-radical and surface electron transfer dominated bisphenol A degradation in system of ozone and peroxydisulfate co-activated by CoFe2O4-biochar [J]. Applied Surface Science, 2021, 541: 147887. doi: 10.1016/j.apsusc.2020.147887
|
[74] |
杜明辉, 王勇, 高群丽, 等. 臭氧微气泡处理有机废水的效果与机制 [J]. 化工进展, 2021, 40(12): 6907-6915.
DU M H, WANG Y, GAO Q L, et al. Mechanism and efficiency of ozone microbubble treatment of organic wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6907-6915(in Chinese).
|
[75] |
JABESA A, GHOSH P. Oxidation of bisphenol-a by ozone microbubbles: Effects of operational parameters and kinetics study [J]. Environmental Technology & Innovation, 2022, 26: 102271.
|
[76] |
ZHANG H, HE Y L, LAI L D, et al. Catalytic ozonation of Bisphenol A in aqueous solution by Fe3O4-MnO2 magnetic composites: Performance, transformation pathways and mechanism [J]. Separation and Purification Technology, 2020, 245: 116449. doi: 10.1016/j.seppur.2019.116449
|
[77] |
CHEN Y H, WANG B, HOU W C. Graphitic carbon nitride embedded with graphene materials towards photocatalysis of bisphenol A: The role of graphene and mediation of superoxide and singlet oxygen [J]. Chemosphere, 2021, 278: 130334. doi: 10.1016/j.chemosphere.2021.130334
|
[78] |
WANG Q, LV G H, CAO Y T, et al. Rational design of 2D ultrathin BiO(HCOO)xI1-x composite nanosheets: The synergistic effect of ultrathin structure and hybridization in the effective elimination of BPA under visible light irradiation [J]. Separation and Purification Technology, 2022, 282: 120153. doi: 10.1016/j.seppur.2021.120153
|
[79] |
王燚凡, 佘少桦, 孙传智, 等. 超薄硫掺杂石墨相氮化碳纳米片光催化降解双酚A [J]. 环境科学研究, 2021, 34(12): 2859-2866.
WANG Y F, SHE S H, SUN C Z, et al. Photocatalytic degradation of bisphenol A using ultrathin S-doped graphitic carbon nitride nanosheets [J]. Research of Environmental Sciences, 2021, 34(12): 2859-2866(in Chinese).
|
[80] |
TANG Y, LI X L, ZHANG H, et al. Cobalt-based ZIF coordinated hybrids with defective TiO2-x for boosting visible light-driven photo-Fenton-like degradation of bisphenol A [J]. Chemosphere, 2020, 259: 127431. doi: 10.1016/j.chemosphere.2020.127431
|
[81] |
HE X, WU M, AO Z M, et al. Metal-organic frameworks derived C/TiO2 for visible light photocatalysis: Simple synthesis and contribution of carbon species [J]. Journal of Hazardous Materials, 2021, 403: 124048. doi: 10.1016/j.jhazmat.2020.124048
|
[82] |
吴瞳, 顾佳玉, 彭晨, 等. 石墨相氮化碳同质结光催化处理水中双酚A [J]. 中国环境科学, 2021, 41(7): 3255-3265.
WU T, GU J Y, PENG C, et al. Study on photocatalytic degradation of bisphenol A in water by graphite phase carbon nitride homojunction [J]. China Environmental Science, 2021, 41(7): 3255-3265(in Chinese).
|
[83] |
ANUCHA C B, ALTIN I, BIYIKLIOGLU Z, et al. Synthesis, characterization, and photocatalytic evaluation of manganese (III) phthalocyanine sensitized ZnWO4 (ZnWO4MnPc) for bisphenol A degradation under UV irradiation [J]. Nanomaterials, 2020, 10(11): 2139. doi: 10.3390/nano10112139
|
[84] |
HUNGE Y M, YADAV A A, KHAN S, et al. Photocatalytic degradation of bisphenol A using titanium dioxide@nanodiamond composites under UV light illumination [J]. Journal of Colloid and Interface Science, 2021, 582: 1058-1066. doi: 10.1016/j.jcis.2020.08.102
|
[85] |
GARCÍA-DÍAZ E, ZHANG D N, LI Y L, et al. TiO2 microspheres with cross-linked cyclodextrin coating exhibit improved stability and sustained photocatalytic degradation of bisphenol A in secondary effluent [J]. Water Research, 2020, 183: 116095. doi: 10.1016/j.watres.2020.116095
|
[86] |
ZHANG H B, WU J C, HAN J, et al. Photocatalyst/enzyme heterojunction fabricated for high-efficiency photoenzyme synergic catalytic degrading Bisphenol A in water [J]. Chemical Engineering Journal, 2020, 385: 123764. doi: 10.1016/j.cej.2019.123764
|
[87] |
PELEYEJU M G, VILJOEN E L. WO3-based catalysts for photocatalytic and photoelectrocatalytic removal of organic pollutants from water - A review [J]. Journal of Water Process Engineering, 2021, 40: 101930. doi: 10.1016/j.jwpe.2021.101930
|
[88] |
LI S P, LIU C L, LIU H J, et al. Effective stabilization of atomic hydrogen by Pd nanoparticles for rapid hexavalent chromium reduction and synchronous bisphenol A oxidation during the photoelectrocatalytic process [J]. Journal of Hazardous Materials, 2022, 422: 126974. doi: 10.1016/j.jhazmat.2021.126974
|
[89] |
GOULART L A, ALVES S A, MASCARO L H. Photoelectrochemical degradation of bisphenol A using Cu doped WO3 electrodes [J]. Journal of Electroanalytical Chemistry, 2019, 839: 123-133. doi: 10.1016/j.jelechem.2019.03.027
|
[90] |
ZHOU Q X, WANG M Y, TONG Y Y, et al. Improved photoelectrocatalytic degradation of tetrabromobisphenol A with silver and reduced graphene oxide-modified TiO2 nanotube arrays under simulated sunlight [J]. Ecotoxicology and Environmental Safety, 2019, 182: 109472. doi: 10.1016/j.ecoenv.2019.109472
|
[91] |
WANG W K, ZHU W Z, MAO L, et al. Two-dimensional TiO2-g-C3N4 with both TiN and CO bridges with excellent conductivity for synergistic photoelectrocatalytic degradation of bisphenol A [J]. Journal of Colloid and Interface Science, 2019, 557: 227-235. doi: 10.1016/j.jcis.2019.08.088
|
[92] |
SHAO H X, WANG Y B, ZENG H B, et al. Enhanced photoelectrocatalytic degradation of bisphenol a by BiVO4 photoanode coupling with peroxymonosulfate [J]. Journal of Hazardous Materials, 2020, 394: 121105. doi: 10.1016/j.jhazmat.2019.121105
|
[93] |
符远航, 刘安迪, 黄纬斌, 等. 负载多壁碳纳米管的多孔Ti/SnO2-Sb-Ni电极电催化氧化双酚A [J]. 环境科学, 2022, 43(5): 2640-2649.
FU Y H, LIU A D, HUANG W B, et al. Electrocatalytic oxidation of bisphenol A by porous Ti/SnO2-Sb-Ni electrode loaded with multi-wall carbon nanotubes [J]. Environmental Science, 2022, 43(5): 2640-2649(in Chinese).
|
[94] |
SAMARGHANDI M R, ANSARI A, DARGAHI A, et al. Enhanced electrocatalytic degradation of bisphenol A by graphite/β-PbO2 anode in a three-dimensional electrochemical reactor [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106072. doi: 10.1016/j.jece.2021.106072
|
[95] |
CHEN S Y, LIU P, LI Y, et al. Engineering the doping amount of rare earth element erbium in CdWO4: Influence on the electrochemical performance and the application to the electrochemical detection of bisphenol A [J]. Journal of Electroanalytical Chemistry, 2022, 904: 115867. doi: 10.1016/j.jelechem.2021.115867
|
[96] |
ZHAO L, ZHANG X Q, LIU Z M, et al. Carbon nanotube-based electrocatalytic filtration membrane for continuous degradation of flow-through Bisphenol A [J]. Separation and Purification Technology, 2021, 265: 118503. doi: 10.1016/j.seppur.2021.118503
|
[97] |
GUO R N, WANG Y Y, LI J J, et al. Sulfamethoxazole degradation by visible light assisted peroxymonosulfate process based on nanohybrid manganese dioxide incorporating ferric oxide [J]. Applied Catalysis B:Environmental, 2020, 278: 119297. doi: 10.1016/j.apcatb.2020.119297
|
[98] |
李广英, 杜敏洁, 谈成英, 等. 锰铁氧体活化PMS降解双酚A的过程机制 [J]. 环境工程学报, 2021, 15(9): 2952-2962.
LI G Y, DU M J, TAN C Y, et al. Mechanism of BPA degradation in a system of peroxymonosulfate activated by a Mn/Fe bimetallic oxide catalysts [J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2952-2962(in Chinese).
|
[99] |
YOU Y, ZHAO Z J, SONG Y R, et al. Synthesis of magnetized nitrogen-doped biochar and its high efficiency for elimination of ciprofloxacin hydrochloride by activation of peroxymonosulfate [J]. Separation and Purification Technology, 2021, 258: 117977. doi: 10.1016/j.seppur.2020.117977
|
[100] |
XU H D, JIANG N, WANG D, et al. Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways [J]. Applied Catalysis B:Environmental, 2020, 263: 118350. doi: 10.1016/j.apcatb.2019.118350
|
[101] |
ZHENG W T, YOU S J, YAO Y, et al. Development of atomic hydrogen-mediated electrocatalytic filtration system for peroxymonosulfate activation towards ultrafast degradation of emerging organic contaminants [J]. Applied Catalysis B:Environmental, 2021, 298: 120593. doi: 10.1016/j.apcatb.2021.120593
|
[102] |
HUANG Y, NENGZI L C, ZHANG X Y, et al. Catalytic degradation of ciprofloxacin by magnetic CuS/Fe2O3/Mn2O3 nanocomposite activated peroxymonosulfate: Influence factors, degradation pathways and reaction mechanism [J]. Chemical Engineering Journal, 2020, 388: 124274. doi: 10.1016/j.cej.2020.124274
|
[103] |
CHEN X L, LI F, ZHANG M Y, et al. Highly dispersed and stabilized Co3O4/C anchored on porous biochar for bisphenol A degradation by sulfate radical advanced oxidation process [J]. Science of the Total Environment, 2021, 777: 145794. doi: 10.1016/j.scitotenv.2021.145794
|
[104] |
刘畅, 王宇寒, 胡清, 等. 太阳光/CuMnFe LDHs催化剂/过一硫酸盐体系降解双酚A [J]. 环境工程学报, 2021, 15(11): 3545-3560.
LIU C, WANG Y H, HU Q, et al. Degradation of bisphenol A using CuMnFe LDHs catalyst and peroxymonosulfate under solar light [J]. Chinese Journal of Environmental Engineering, 2021, 15(11): 3545-3560(in Chinese).
|
[105] |
HU W R, TONG W H, LI Y L, et al. Hydrothermal route-enabled synthesis of sludge-derived carbon with oxygen functional groups for bisphenol A degradation through activation of peroxymonosulfate [J]. Journal of Hazardous Materials, 2020, 388: 121801. doi: 10.1016/j.jhazmat.2019.121801
|
[106] |
WANG A W, NI J X, WANG W, et al. MOF Derived Co−Fe nitrogen doped graphite[email protected]magnetic chitosan Micro−nanoreactor for environmental applications: Synergy enhancement effect of adsorption−PMS activation [J]. Applied Catalysis B:Environmental, 2022, 319: 121926. doi: 10.1016/j.apcatb.2022.121926
|
[107] |
LIU Y, GUO R N, SHEN G H, et al. Construction of CuO@CuS/PVDF composite membrane and its superiority for degradation of antibiotics by activation of persulfate [J]. Chemical Engineering Journal, 2021, 405: 126990. doi: 10.1016/j.cej.2020.126990
|
[108] |
MAO D N, YAN X, WANG H J, et al. Catalysis of rGO-WO3 nanocomposite for aqueous bisphenol A degradation in dielectric barrier discharge plasma oxidation process [J]. Chemosphere, 2021, 262: 128073. doi: 10.1016/j.chemosphere.2020.128073
|
[109] |
ABDEL-FATTAH E. Atmospheric pressure helium plasma jet and its applications to methylene blue degradation [J]. Journal of Electrostatics, 2019, 101: 103360. doi: 10.1016/j.elstat.2019.103360
|
[110] |
王小平, 梅洁. 泡膜式介质阻挡放电等离子体去除模拟生产废水中的四溴双酚S [J]. 环境工程学报, 2021, 15(7): 2305-2313.
WANG X P, MEI J. Removal of TBBPS from simulated production wastewater by bubble film dielectric barrier discharge plasma [J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2305-2313(in Chinese).
|
[111] |
ZHOU W, GUAN Z, ZHAO M G, et al. Characteristics and mechanism of toluene removal from gas by novelty array double dielectric barrier discharge combined with TiO2/Al2O3 catalyst [J]. Chemosphere, 2019, 226: 766-773. doi: 10.1016/j.chemosphere.2019.04.005
|
[112] |
GUO H, JIANG N, WANG H J, et al. Degradation of flumequine in water by pulsed discharge plasma coupled with reduced graphene oxide/TiO2 nanocomposites [J]. Separation and Purification Technology, 2019, 218: 206-216. doi: 10.1016/j.seppur.2019.03.001
|
[113] |
DENG R Y, HE Q, YANG D X, et al. Enhanced synergistic performance of nano-Fe0-CeO2 composites for the degradation of diclofenac in DBD plasma [J]. Chemical Engineering Journal, 2021, 406: 126884. doi: 10.1016/j.cej.2020.126884
|
[114] |
YANG J R, ZENG D Q, HASSAN M, et al. Efficient degradation of Bisphenol A by dielectric barrier discharge non-thermal plasma: Performance, degradation pathways and mechanistic consideration [J]. Chemosphere, 2022, 286: 131627. doi: 10.1016/j.chemosphere.2021.131627
|
[115] |
JIANG N, LI X C, GUO H, et al. Plasma-assisted catalysis decomposition of BPA over graphene-CdS nanocomposites in pulsed gas-liquid hybrid discharge: Photocorrosion inhibition and synergistic mechanism analysis [J]. Chemical Engineering Journal, 2021, 412: 128627. doi: 10.1016/j.cej.2021.128627
|
[116] |
WANG H J, SHEN Z, YAN X, et al. Dielectric barrier discharge plasma coupled with WO3 for bisphenol A degradation [J]. Chemosphere, 2021, 274: 129722. doi: 10.1016/j.chemosphere.2021.129722
|
[117] |
闫欣, 依成武, 毛丹妮, 等. 纳米氧化锌协同介质阻挡放电等离子体降解双酚A [J]. 环境工程学报, 2021, 15(1): 152-161.
YAN X, YI C W, MAO D N, et al. Degradation of bisphenol A by dielectric barrier discharge plasma combined with nano-ZnO [J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 152-161(in Chinese).
|