[1] |
RAJESHKUMAR S, LIU Y, ZHANG X Y, et al. Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China [J]. Chemosphere, 2018, 191: 626-638. doi: 10.1016/j.chemosphere.2017.10.078
|
[2] |
赵玉丽, 李杏放. 饮用水消毒副产物: 化学特征与毒性 [J]. 环境化学, 2011, 30(1): 20-33.
ZHAO Y L, LI X. Drinking water disinfection byproducts: Chemical characterization and toxicity [J]. Environmental Chemistry, 2011, 30(1): 20-33(in Chinese).
|
[3] |
LIU X H, LU S Y, GUO W, et al. Antibiotics in the aquatic environments: A review of lakes, China [J]. Science of the Total Environment, 2018, 627: 1195-1208. doi: 10.1016/j.scitotenv.2018.01.271
|
[4] |
PHOON B L, ONG C C, MOHAMED SAHEED M S, et al. Conventional and emerging technologies for removal of antibiotics from wastewater [J]. Journal of Hazardous Materials, 2020, 400: 122961. doi: 10.1016/j.jhazmat.2020.122961
|
[5] |
CHEN G Y, YU Y, LIANG L, et al. Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: A critical review [J]. Journal of Hazardous Materials, 2021, 408: 124461. doi: 10.1016/j.jhazmat.2020.124461
|
[6] |
ZAMORA-LEDEZMA C, NEGRETE-BOLAGAY D, FIGUEROA F, et al. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods [J]. Environmental Technology & Innovation, 2021, 22(1957): 101504.
|
[7] |
高宝玉. 水和废水处理用复合高分子絮凝剂的研究进展 [J]. 环境化学, 2011, 30(1): 337-345.
GAO B Y. Progress in the research of composite polymeric flocculants for water and wastewater treatment [J]. Environmental Chemistry, 2011, 30(1): 337-345(in Chinese).
|
[8] |
HUBE S, ESKAFI M, HRAFNKELSDÓTTIR K F, et al. Direct membrane filtration for wastewater treatment and resource recovery: A review [J]. The Science of the Total Environment, 2020, 710: 136375. doi: 10.1016/j.scitotenv.2019.136375
|
[9] |
OBOTEY EZUGBE E, RATHILAL S. Membrane technologies in wastewater treatment: A review [J]. Membranes, 2020, 10(5): 89. doi: 10.3390/membranes10050089
|
[10] |
MUTHUSARAVANAN S, SIVARAJASEKAR N, VIVEK J S, et al. Phytoremediation of heavy metals: Mechanisms, methods and enhancements [J]. Environmental Chemistry Letters, 2018, 16(4): 1339-1359. doi: 10.1007/s10311-018-0762-3
|
[11] |
WEI Z H, van LE Q, PENG W X, et al. A review on phytoremediation of contaminants in air, water and soil [J]. Journal of Hazardous Materials, 2021, 403: 123658. doi: 10.1016/j.jhazmat.2020.123658
|
[12] |
AL-MAMUN M R, KADER S, ISLAM M S, et al. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review [J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103248. doi: 10.1016/j.jece.2019.103248
|
[13] |
任学昌, 马学琴, 任晓亮, 等. TiO2/PANI/Fe3O4的低温水热法制备及其光催化活性与磁回收性能 [J]. 环境化学, 2013, 32(11): 2149-2155. doi: 10.7524/j.issn.0254-6108.2013.11.019
REN X C, MA X Q, REN X L, et al. Preparation of TiO2/PANI/Fe3O4 by low temperature hydrothermal method and its photocatalytic activity and magnetic recovery characteristic [J]. Environmental Chemistry, 2013, 32(11): 2149-2155(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.11.019
|
[14] |
黄潇月, 王伟, 凌岚, 等. 纳米零价铁与重金属的反应: “核-壳”结构在重金属去除中的作用 [J]. 化学学报, 2017, 75(6): 529-537. doi: 10.6023/A17020051
HUANG X Y, WANG W, LING L, et al. Heavy metal-nZVI reactions: The core-shell structure and applications for heavy metal treatment [J]. Acta Chimica Sinica, 2017, 75(6): 529-537(in Chinese). doi: 10.6023/A17020051
|
[15] |
LIU A R, LIU J, HAN J H, et al. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides [J]. Journal of Hazardous Materials, 2017, 322: 129-135. doi: 10.1016/j.jhazmat.2015.12.070
|
[16] |
刘静, 刘爱荣, 张伟贤. 纳米零价铁及其在环境介质中氧化后性质演变研究进展 [J]. 环境化学, 2014, 33(4): 576-583. doi: 10.7524/j.issn.0254-6108.2014.04.009
LIU J, LIU A R, ZHANG W X. Review on transformation of oxidized nanoscale zero valent iron in environment media [J]. Environmental Chemistry, 2014, 33(4): 576-583(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.04.009
|
[17] |
刘爱荣, 李季, 王伟, 等. 纳米零价铁处理含重金属工业废水研究进展 [J]. 环境化学, 2022, 41(4): 1278-1291. doi: 10.7524/j.issn.0254-6108.2021082203
LIU A R, LI J, WANG W, et al. Advance of heavy metal-loading industrial wastewater treatment with nanoscale zero-valent iron [J]. Environmental Chemistry, 2022, 41(4): 1278-1291(in Chinese). doi: 10.7524/j.issn.0254-6108.2021082203
|
[18] |
YAO Y H, HUANG S M, ZHOU W, et al. Highly dispersed core-shell iron nanoparticles decorating onto graphene nanosheets for superior Zn(Ⅱ) wastewater treatment [J]. Environmental Science and Pollution Research, 2019, 26(1): 806-815. doi: 10.1007/s11356-018-3631-5
|
[19] |
LI Z T, WANG L, MENG J, et al. Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(Ⅱ), Pb(Ⅱ), and As(Ⅲ) in aqueous solution and soil [J]. Journal of Hazardous Materials, 2018, 344: 1-11. doi: 10.1016/j.jhazmat.2017.09.036
|
[20] |
JIANG Q, ZHANG Y, JIANG S M, et al. Graphene-like carbon sheet-supported nZVI for efficient atrazine oxidation degradation by persulfate activation [J]. Chemical Engineering Journal, 2021, 403: 126309. doi: 10.1016/j.cej.2020.126309
|
[21] |
ZHAO X, LIU W, CAI Z Q, et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation [J]. Water Research, 2016, 100: 245-266. doi: 10.1016/j.watres.2016.05.019
|
[22] |
LU H J, WANG J K, FERGUSON S, et al. Mechanism, synthesis and modification of nano zerovalent iron in water treatment [J]. Nanoscale, 2016, 8(19): 9962-9975. doi: 10.1039/C6NR00740F
|
[23] |
MUKHERJEE R, KUMAR R, SINHA A, et al. A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation [J]. Critical Reviews in Environmental Science and Technology, 2016, 46(5): 443-466. doi: 10.1080/10643389.2015.1103832
|
[24] |
WANG P, FU F G, LIU T Y. A review of the new multifunctional nano zero-valent iron composites for wastewater treatment: Emergence, preparation, optimization and mechanism [J]. Chemosphere, 2021, 285: 131435. doi: 10.1016/j.chemosphere.2021.131435
|
[25] |
LIU A R, FU J H, LIU J, et al. Copper nanostructure genesis via galvanic replacement and kirkendall growth from nanoscale zero-valent iron [J]. ACS ES& T Water, 2022, 2(8): 1353-1359.
|
[26] |
TESH S J, SCOTT T B. Nano-composites for water remediation: A review [J]. Advanced Materials, 2014, 26(35): 6056-6068. doi: 10.1002/adma.201401376
|
[27] |
HE F, LI Z J, SHI S S, et al. Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron [J]. Environmental Science & Technology, 2018, 52(15): 8627-8637.
|
[28] |
LIU X, CAO Z, YUAN Z L, et al. Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron [J]. Chemical Engineering Journal, 2018, 334: 508-518. doi: 10.1016/j.cej.2017.10.060
|
[29] |
LIU J, LIU A R, LI J, et al. Probing the performance and mechanisms of Congo red wastewater decolorization with nanoscale zero-valent iron in the continuing flow reactor [J]. Journal of Cleaner Production, 2022, 346: 131201. doi: 10.1016/j.jclepro.2022.131201
|
[30] |
KAO L C, HA Y, CHANG W J, et al. Trace key mechanistic features of the arsenite sequestration reaction with nanoscale zerovalent iron [J]. Journal of the American Chemical Society, 2021, 143(40): 16538-16548. doi: 10.1021/jacs.1c06159
|
[31] |
HAUSMANN J N, BELTRÁN-SUITO R, MEBS S, et al. Evolving highly active oxidic iron(III) phase from corrosion of intermetallic iron silicide to master efficient electrocatalytic water oxidation and selective oxygenation of 5-hydroxymethylfurfural [J]. Advanced Materials, 2021, 33(27): 2008823. doi: 10.1002/adma.202008823
|
[32] |
张礼知, 张伟贤. 铁环境化学: 环境和地球化学的研究热点 [J]. 化学学报, 2017, 75(6): 519-520.
ZHANG, L Z, ZHANG, W X. Environmental chemistry of iron-a frontier in environmental chemistry and geochemistry [J]. Acta Chimica Sinica, 2017, 75(6): 519-520(in Chinese).
|
[33] |
CHENG Y J, DONG H R, LU Y, et al. Toxicity of sulfide-modified nanoscale zero-valent iron to Escherichia coli in aqueous solutions [J]. Chemosphere, 2019, 220: 523-530. doi: 10.1016/j.chemosphere.2018.12.159
|
[34] |
权衡, 牛琳, 时迪, 等. 负载纳米零价铁的铁碳材料制备及其降解抗生素性能研究 [J]. 环境科学研究, 2022, 35(12): 2732-2747. doi: 10.13198/j.issn.1001-6929.2022.07.17
QUAN H, NIU L, SHI D, et al. Preparation of iron-carbon materials loaded with nano zero-valent iron and their performance of degrading antibiotics [J]. Research of Environmental Sciences, 2022, 35(12): 2732-2747(in Chinese). doi: 10.13198/j.issn.1001-6929.2022.07.17
|
[35] |
YANG S M, LIU A R, LIU J, et al. Advance of sulfidated nanoscale zero-valent iron: Synthesis, properties and environmental application [J]. Acta Chimica Sinica, 2022, 80(11): 1536. doi: 10.6023/A22080345
|
[36] |
YAN J C, HAN L, GAO W G, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene [J]. Bioresource Technology, 2015, 175: 269-274. doi: 10.1016/j.biortech.2014.10.103
|
[37] |
LIU A R, WANG W, LIU J, et al. Nanoencapsulation of arsenate with nanoscale zero-valent iron (nZVI): A 3D perspective [J]. Science Bulletin, 2018, 63(24): 1641-1648. doi: 10.1016/j.scib.2018.12.002
|
[38] |
ZHOU Y Y, TANG L, YANG G D, et al. Phosphorus-doped ordered mesoporous carbons embedded with Pd/Fe bimetal nanoparticles for the dechlorination of 2, 4-dichlorophenol [J]. Catalysis Science & Technology, 2016, 6(6): 1930-1939.
|
[39] |
HUANG Q, GU T H, LIU A R, et al. Probing pollutant reactions at the iron surface: A case study on selenite reactions with nanoscale zero-valent iron [J]. Environmental Science:Nano, 2021, 8(9): 2650-2659. doi: 10.1039/D1EN00458A
|
[40] |
WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs [J]. Environmental Science & Technology, 1997, 31: 2154-2156.
|
[41] |
CHANG J, WOO H, KO M S, et al. Targeted removal of trichlorophenol in water by oleic acid-coated nanoscale palladium/zero-valent iron alginate beads [J]. Journal of Hazardous Materials, 2015, 293: 30-36. doi: 10.1016/j.jhazmat.2015.03.021
|
[42] |
CHEN C M. CiteSpace Ⅱ: Detecting and visualizing emerging trends and transient patterns in scientific literature [J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. doi: 10.1002/asi.20317
|
[43] |
陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能 [J]. 科学学研究, 2015, 33(2): 242-253. doi: 10.16192/j.cnki.1003-2053.2015.02.009
CHEN Y, CHEN C M, LIU Z Y, et al. The methodology function of CiteSpace mapping knowledge domains [J]. Studies in Science of Science, 2015, 33(2): 242-253(in Chinese). doi: 10.16192/j.cnki.1003-2053.2015.02.009
|
[44] |
CHEN C M, HU Z G, LIU S B, et al. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace [J]. Expert Opinion on Biological Therapy, 2012, 12(5): 593-608. doi: 10.1517/14712598.2012.674507
|
[45] |
ELLIOTT D W, ZHANG W X. Field assessment of nanoscale bimetallic particles for groundwater treatment [J]. Environmental Science & Technology, 2001, 35(24): 4922-4926.
|
[46] |
LI X Q, ZHANG W X. Iron nanoparticles: The core-shell structure and unique properties for Ni(Ⅱ) sequestration [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2006, 22(10): 4638-4642. doi: 10.1021/la060057k
|
[47] |
BOPARAI H K, JOSEPH M, O’CARROLL D M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles [J]. Journal of Hazardous Materials, 2011, 186(1): 458-465. doi: 10.1016/j.jhazmat.2010.11.029
|
[48] |
LING L, HUANG X Y, ZHANG W X. Enrichment of precious metals from wastewater with core–shell nanoparticles of iron [J]. Advanced Materials, 2018, 30(17): 1705703. doi: 10.1002/adma.201705703
|
[49] |
LIU Y Z, WU T, WHITE J C, et al. A new strategy using nanoscale zero-valent iron to simultaneously promote remediation and safe crop production in contaminated soil [J]. Nature Nanotechnology, 2021, 16(2): 197-205. doi: 10.1038/s41565-020-00803-1
|
[50] |
WEI K, LI H, GU H Y, et al. Strained zero-valent iron for highly efficient heavy metal removal [J]. Advanced Functional Materials, 2022, 32(26): 2200498. doi: 10.1002/adfm.202200498
|
[51] |
DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(Ⅵ) removal from aqueous solution [J]. Journal of Hazardous Materials, 2017, 332: 79-86. doi: 10.1016/j.jhazmat.2017.03.002
|
[52] |
NGUYEN N H A, ŠPÁNEK R, KASALICKÃ V, et al. Different effects of nano-scale and micro-scale zero-valent iron particles on planktonic microorganisms from natural reservoir water [J]. Environmental Science:Nano, 2018, 5(5): 1117-1129. doi: 10.1039/C7EN01120B
|
[53] |
NASIRI J, MOTAMEDI E, NAGHAVI M R, et al. Removal of crystal violet from water using β-cyclodextrin functionalized biogenic zero-valent iron nanoadsorbents synthesized via aqueous root extracts of Ferula persica [J]. Journal of Hazardous Materials, 2019, 367: 325-338. doi: 10.1016/j.jhazmat.2018.12.079
|
[54] |
KECIĆ V, KERKEZ Đ, PRICA M, et al. Optimization of azo printing dye removal with oak leaves-nZVI/H2O2 system using statistically designed experiment [J]. Journal of Cleaner Production, 2018, 202: 65-80. doi: 10.1016/j.jclepro.2018.08.117
|
[55] |
ZHANG N Q, CHEN J Y, FANG Z Q, et al. Ceria accelerated nanoscale zerovalent iron assisted heterogenous Fenton oxidation of tetracycline [J]. Chemical Engineering Journal, 2019, 369: 588-599. doi: 10.1016/j.cej.2019.03.112
|
[56] |
ZHANG D J, SHEN J Y, SHI H F, et al. Substantially enhanced anaerobic reduction of nitrobenzene by biochar stabilized sulfide-modified nanoscale zero-valent iron: Process and mechanisms [J]. Environment International, 2019, 131: 105020. doi: 10.1016/j.envint.2019.105020
|
[57] |
LING L, ZHANG W X. Enrichment and encapsulation of uranium with iron nanoparticle [J]. Journal of the American Chemical Society, 2015, 137(8): 2788-2791. doi: 10.1021/ja510488r
|
[58] |
ZHANG W X. Nanoscale iron particles for environmental remediation: An overview [J]. Journal of Nanoparticle Research, 2003, 5(3): 323-332.
|
[59] |
KHIN M M, NAIR A S, BABU V J, et al. A review on nanomaterials for environmental remediation [J]. Energy & Environmental Science, 2012, 5(8): 8075-8109.
|
[60] |
ZOU Y D, WANG X X, KHAN A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review [J]. Environmental Science & Technology, 2016, 50(14): 7290-7304.
|
[61] |
FAN D M, LAN Y, TRATNYEK P G, et al. Sulfidation of iron-based materials: A review of processes and implications for water treatment and remediation [J]. Environmental Science & Technology, 2017, 51(22): 13070-13085.
|