[1] |
SLATE A J, WHITEHEAD K A, BROWNSON D A C, et al. Microbial fuel cells: An overview of current technology [J]. Renewable and Sustainable Energy Reviews, 2019, 101: 60-81. doi: 10.1016/j.rser.2018.09.044
|
[2] |
蒋杭城, 许蕾, 谢静, 等. 超声预处理对剩余污泥微生物燃料电池性能的影响 [J]. 环境化学, 2015, 34(5): 989-994. doi: 10.7524/j.issn.0254-6108.2015.05.2014091201
JIANG H C, XU L, XIE J, et al. The effect of ultrasonic pretreated excess sludge on the performance of microbial fuel cells [J]. Environmental Chemistry, 2015, 34(5): 989-994(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.05.2014091201
|
[3] |
刘岩婉晶, 赵倩楠, 葛润蕾, 等. 微生物燃料电池阳极产电菌电子转移主要机制及其影响因素 [J]. 环境化学, 2019, 38(8): 1745-1756. doi: 10.7524/j.issn.0254-6108.2018101005
LIU Y, ZHAO Q N, GE R L, et al. Research progress on electron transfer mechanism and its influencing factors on microbial fuel cells anode exoelectrogens [J]. Environmental Chemistry, 2019, 38(8): 1745-1756(in Chinese). doi: 10.7524/j.issn.0254-6108.2018101005
|
[4] |
PALANISAMY G, JUNG H Y, SADHASIVAM T, et al. A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes [J]. Journal of Cleaner Production, 2019, 221: 598-621. doi: 10.1016/j.jclepro.2019.02.172
|
[5] |
CHEN S, PATIL S A, BROWN R K, et al. Strategies for optimizing the power output of microbial fuel cells: Transitioning from fundamental studies to practical implementation[J]. Applied Energy, 2019, 233–234: 15-28.
|
[6] |
WANG R W, LIU D, YAN M, et al. Three-dimensional high performance free-standing anode by one-step carbonization of pinecone in microbial fuel cells [J]. Bioresource Technology, 2019, 292: 121956. doi: 10.1016/j.biortech.2019.121956
|
[7] |
YUAN Y, ZHOU S G, LIU Y, et al. Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells [J]. Environmental Science & Technology, 2013, 47(24): 14525-14532.
|
[8] |
LI M Z, CI S Q, DING Y C, et al. Almond shell derived porous carbon for a high-performance anode of microbial fuel cells [J]. Sustainable Energy & Fuels, 2019, 3(12): 3415-3421.
|
[9] |
ZOU L, QIAO Y, WU Z Y, et al. Tailoring Unique Mesopores of Hierarchically Porous Structures for Fast Direct Electrochemistry in Microbial Fuel Cells [J]. Advanced energy materials, 2016, 6(4): 1501535.1-1501535.6.
|
[10] |
CAI T, MENG L J, CHEN G, et al. Application of advanced anodes in microbial fuel cells for power generation: A review [J]. Chemosphere, 2020, 248: 125985. doi: 10.1016/j.chemosphere.2020.125985
|
[11] |
HE Y R, XIAO X, LI W W, et al. Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode [J]. Physical Chemistry Chemical Physics:PCCP, 2012, 14(28): 9966-9971. doi: 10.1039/c2cp40873b
|
[12] |
WU X X, QIAO Y, GUO C X. et al. Nitrogen doping to atomically match reaction sites in microbial fuel cells[J]. Communications Chemistry, 2020, 68(3).
|
[13] |
YU Y Y, GUO C X, YONG Y C, et al. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode [J]. Chemosphere, 2015, 140: 26-33. doi: 10.1016/j.chemosphere.2014.09.070
|
[14] |
WANG R W, YAN M, LI H D, et al. FeS2 Nanoparticles decorated graphene as microbial-fuel-cell anode achieving high power density[J]. Advanced Materials, 2018, 30(22): 1800618.
|
[15] |
OH S, MIN B, LOGAN B E. Cathode performance as a factor in electricity generation in microbial fuel cells [J]. Environmental Science & Technology, 2004, 38(18): 4900-4904.
|
[16] |
QU L T, LIU Y, BAEK J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells [J]. ACS Nano, 2010, 4(3): 1321-1326. doi: 10.1021/nn901850u
|
[17] |
ENGLERT J M, VECERA P, KNIRSCH K C, et al. Scanning-Raman-microscopy for the statistical analysis of covalently functionalized graphene [J]. ACS Nano, 2013, 7(6): 5472-5482. doi: 10.1021/nn401481h
|
[18] |
ZHU N W, CHEN X, ZHANG T, et al. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes [J]. Bioresource Technology, 2011, 102(1): 422-426. doi: 10.1016/j.biortech.2010.06.046
|
[19] |
YOU S J, MA M, WANG W, et al. 3D macroporous nitrogen-enriched graphitic carbon scaffold for efficient bioelectricity generation in microbial fuel cells [J]. Advanced Energy Materials, 2017, 7(4): 1601364. doi: 10.1002/aenm.201601364
|
[20] |
GONG K P, DU F, XIA Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction [J]. Science, 2009, 323(5915): 760-764. doi: 10.1126/science.1168049
|
[21] |
ZHANG Y, WANG C W, HOU H S, et al. Sodium‐ion batteries: Nitrogen doped/carbon tuning yolk‐like TiO2 and its remarkable impact on sodium storage performances [J]. Advanced Energy Materials, 2016, 7(4): 1600173.1-1600173.12.
|
[22] |
ZHANG L J, HE W H, YANG J C, et al. Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells [J]. Biosensors & Bioelectronics, 2018, 122: 217-223.
|
[23] |
HU M H, LI X, XIONG J, et al. Nano-Fe3C@PGC as a novel low-cost anode electrocatalyst for superior performance microbial fuel cells [J]. Biosensors and Bioelectronics, 2019, 142: 111594. doi: 10.1016/j.bios.2019.111594
|
[24] |
CARMONA-MARTINEZ A A, HARNISCH F, FITZGERALD L A, et al. Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants [J]. Bioelectrochemistry (Amsterdam, Netherlands), 2011, 81(2): 74-80. doi: 10.1016/j.bioelechem.2011.02.006
|
[25] |
SHARMA M, JAIN P, VARANASI J L, et al. Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode [J]. Bioresource Technology, 2013, 150: 172-180. doi: 10.1016/j.biortech.2013.09.069
|
[26] |
HAO L, YU J, XU X, et al. Nitrogen-doped MoS2/carbon as highly oxygen-permeable and stable catalysts for oxygen reduction reaction in microbial fuel cells [J]. Journal of Power Sources, 2017, 339: 68-79. doi: 10.1016/j.jpowsour.2016.11.041
|
[27] |
ZHAO S, LIU P, NIU Y Y, et al. A novel early warning system based on a sediment microbial fuel cell for in situ and real time hexavalent chromium detection in industrial wastewater [J]. Sensors (Basel, Switzerland), 2018, 18(2): 642.
|
[28] |
HUANG Y X, LIU X W, XIE J F, et al. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems [J]. Chemical Communications (Cambridge, England), 2011, 47(20): 5795-5797. doi: 10.1039/c1cc10159e
|
[29] |
HARTSHORNE R S, REARDON C L, ROSS D, et al. Characterization of an electron conduit between bacteria and the extracellular environment [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52): 22169-22174. doi: 10.1073/pnas.0900086106
|
[30] |
WHITE G F, EDWARDS M J, GOMEZ-PEREZ L, et al. Mechanisms of bacterial extracellular electron exchange [J]. Advances in Microbial Physiology, 2016, 68: 87-138.
|
[31] |
JIMÉNEZ-RAMÍREZ L E, CAMACHO-MOJICA D C, MUÑOZ-SANDOVAL E, et al. First-principles study of transition metal adsorbed on porphyrin-like motifs in pyrrolic nitrogen-doped carbon nanostructures [J]. Carbon, 2017, 116: 381-390. doi: 10.1016/j.carbon.2017.02.018
|