[1] |
黄志辉, 纪亮, 尹洁, 等. 中国道路交通二氧化碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2): 385-393. doi: 10.13198/j.issn.1001-6929.2021.11.06
|
[2] |
袁志逸, 李振宇, 康利平, 等. 中国交通部门低碳排放措施和路径研究综述[J]. 气候变化研究进展, 2021, 17(1): 27-35.
|
[3] |
刘俊伶, 孙一赫, 王克, 等. 中国交通部门中长期低碳发展路径研究[J]. 气候变化研究进展, 2018, 14(5): 513-521.
|
[4] |
生态环境部. 中华人民共和国气候变化第二次两年更新报告[R/OL][2019-07-01]. 2018. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701765971866571.pdf
|
[5] |
EEA. Greenhouse Gas Emissions from Transport in Europe[M]. Brussels: European Environment Agency, 2021.
|
[6] |
陈婷, 倪红, 谷雪景, 等. 中国移动源下阶段排放法规综述和分析[J]. 内燃机工程, 2018, 39(6): 24-30. doi: 10.13949/j.cnki.nrjgc.2018.06.003
|
[7] |
郑婷婷, 王国栋, 顾绍晶, 等. 汽车尾气净化三效催化剂中N2O和NH3的生成及控制研究进展[J]. 化工进展, 2020, 39(6): 2399-2410.
|
[8] |
唐飞, 钱叶剑, 孟顺, 等. 当量比燃烧天然气发动机铑基三效催化器次生污染物研究[J]. 内燃机工程, 2021, 42(6): 70-79. doi: 10.13949/j.cnki.nrjgc.2021.06.010
|
[9] |
WANG Y, LI Y, WANG Z, et al. Hydrogen formation from methane rich combustion under high pressure and high temperature conditions[J]. International Journal of Hydrogen Energy, 2017, 42(20): 14301-14311. doi: 10.1016/j.ijhydene.2017.04.022
|
[10] |
CANT N W, ANGOVE D E, CHAMBERS D C. Nitrous oxide formation during the reaction of simulated exhaust streams over rhodium, platinum and palladium catalysts[J]. Applied Catalysis B Environmental, 1998, 17(1): 63-73.
|
[11] |
TOMMASO S, ROBERTO G, D. M A, et al. Measuring emissions from a demonstrator heavy-duty diesel vehicle under Real-World Conditions-Moving Forward to Euro VII[J]. Catalysts, 2022, 12(2): 184-184. doi: 10.3390/catal12020184
|
[12] |
RICARDO S, ROBERTO G, TOMMASO S, et al. NH3 and N2O real world emissions measurement from a CNG heavy duty vehicle using on-board measurement systems[J]. Applied Sciences, 2021, 11(21): 10055-10055. doi: 10.3390/app112110055
|
[13] |
NEVALAINEN P, KINNUNEN N M, KIRVESLAHTI A, et al. Formation of NH3 and N2O in a modern natural gas three-way catalyst designed for heavy-duty vehicles: The effects of simulated exhaust gas composition and ageing[J]. Applied Catalysis A, General, 2018, 552: 30-37. doi: 10.1016/j.apcata.2017.12.017
|
[14] |
生态环境部. GB 17691-2018重型柴油车污染物排放限值及测量方法(中国第六阶段)[S]. 北京: 中国环境出版社, 2018.
|
[15] |
ODAKA M, KOIKE N, SUZUKI H. Influence of catalyst deactivation on N2O emissions from automobiles[J]. Chemosphere - Global Change Science, 2000, 2(3): 413-423.
|
[16] |
ZHANG Q, LI M H, SHAO S D, et al. Ammonia emissions of a natural gas engine at the stoichiometric operation with TWC[J]. Applied Thermal Engineering, 2018, 130: 1363-1372. doi: 10.1016/j.applthermaleng.2017.11.098
|
[17] |
QIAN Y, WEI X, SUN Y, et al. Investigation of the formation characteristics of N2O and NH3 for stoichiometric natural gas engines with Pd-only catalyst,[J]. Fuel, 2022, 329: 125223-125233. doi: 10.1016/j.fuel.2022.125223
|
[18] |
OH S H, TRIPLETT T. Reaction pathways and mechanism for ammonia formation and removal over palladium-based three-way catalysts: Multiple roles of CO[J]. Catalysis Today, 2014, 231: 22-32. doi: 10.1016/j.cattod.2013.11.048
|
[19] |
ADAMS E C, SKOGLUNDH M, ELME T, et al. Water–gas-shift assisted ammonia formation over Pd/Ce/alumina[J]. Catalysis today, 2018, 307: 169-174. doi: 10.1016/j.cattod.2017.05.035
|
[20] |
方晶晶,许林军,鲁毅钧,等. 铈改性Al2O3担载Pd催化剂的CO氧化性能研究[J]. 环境工程学报, 2009, 3(5): 947-950.
|
[21] |
SAILESH N. BEHERA M S. Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment[J]. Science of The Total Environment, 2010, 408(17): 3569-3575. doi: 10.1016/j.scitotenv.2010.04.017
|
[22] |
RENÈME Y, DHAINAUT F, GRANGER P. Kinetics of the NO/H2/O2 reactions on natural gas vehicle catalysts—Influence of Rh addition to Pd[J]. Applied Catalysis B Environmental, 2012, 111: 424-432.
|
[23] |
BALL D, MOSER D, YANG Y, et al. N2O emissions of low emission vehicles[J]. Sae International Journal of Fuels & Lubricants, 2013, 6(2): 450-456.
|