[1] |
SUN R, GAO Y, Yang Y. Leaching of heavy metals from lead-zinc mine tailings and the subsequent migration and transformation characteristics in paddy soil[J]. Chemosphere, 2022, 291: 132792. doi: 10.1016/j.chemosphere.2021.132792
|
[2] |
XIAO T, GUHA J, BOYLE D, et al. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China[J]. Science of the Total Environment, 2004, 318(1-3): 223-244. doi: 10.1016/S0048-9697(03)00448-0
|
[3] |
WEN J, WU Y, LI X, et al. Migration characteristics of heavy metals in the weathering process of exposed argillaceous sandstone in a mercury-thallium mining area[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111751. doi: 10.1016/j.ecoenv.2020.111751
|
[4] |
WEI Z, HAO Z, LI X, et al. The effects of phytoremediation on soil bacterial communities in an abandoned mine site of rare earth elements[J]. Science of the Total Environment, 2019, 670: 950-960. doi: 10.1016/j.scitotenv.2019.03.118
|
[5] |
SUN X, ZHOU Y, TAN Y, et al. Restoration with pioneer plants changes soil properties and remodels the diversity and structure of bacterial communities in rhizosphere and bulk soil of copper mine tailings in Jiangxi Province, China[J]. Environmental Science and Pollution Research, 2018, 25: 22106-22119. doi: 10.1007/s11356-018-2244-3
|
[6] |
LUO Y, WU Y, WANG H, et al. Bacterial community structure and diversity responses to the direct revegetation of an artisanal zinc smelting slag after 5 years[J]. Environmental Science and Pollution Research, 2018, 25: 14773-14788. doi: 10.1007/s11356-018-1573-6
|
[7] |
LUO Y, WU Y, XING R, et al. Effects of plant litter decomposition on chemical and microbiological characteristics of artisanal zinc smelting slag using indigenous methods[J]. Journal of Geochemical Exploration, 2018, 190: 292-301. doi: 10.1016/j.gexplo.2018.03.019
|
[8] |
JIA T, WANG X, GUO T, et al. Litter Decomposition of Imperata cylindrica in a copper tailing areas with different restoration history: fungal community dynamics and driving factors[J]. Frontiers in Microbiology, 2021: 3466.
|
[9] |
LAN J, ZHANG S, DONG Y, et al. Stabilization and passivation of multiple heavy metals in soil facilitating by pinecone-based biochar: Mechanisms and microbial community evolution[J]. Journal of Hazardous Materials, 2021, 420: 126588. doi: 10.1016/j.jhazmat.2021.126588
|
[10] |
SUI M, LI Y, JIANG Y, et al. Sediment-based biochar facilitates highly efficient nitrate removal: physicochemical properties, biological responses and potential mechanism[J]. Chemical Engineering Journal, 2021, 405: 126645. doi: 10.1016/j.cej.2020.126645
|
[11] |
LI Y, GONG X, XIONG J, et al. Different dissolved organic matters regulate the bioavailability of heavy metals and rhizosphere microbial activity in a plant-wetland soil system[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106823.
|
[12] |
BOLAN N S, ADRIANO D C, KUNHIKRISHNAN A, et al. Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils[J]. Advances in Agronomy, 2011, 110: 1-75.
|
[13] |
MCLEOD M L, BULLINGTON L, CLEVELAND C C, et al. Invasive plant-derived dissolved organic matter alters microbial communities and carbon cycling in soils[J]. Soil Biology and Biochemistry, 2021, 156: 108191. doi: 10.1016/j.soilbio.2021.108191
|
[14] |
STEMDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography:Methods, 2008, 6(11): 572-579. doi: 10.4319/lom.2008.6.572
|
[15] |
LUO Y, WU Y, FU T, et al. Effects of a proline solution cover on the geochemical and mineralogical characteristics of high-sulfur coal gangue[J]. Acta Geochimica, 2018, 37: 701-714. doi: 10.1007/s11631-018-0260-0
|
[16] |
TAPIA A, CORNEJO-LA TORRE M, SANTOS E S, et al. Improvement of chemical quality of percolated leachates by in situ application of aqueous organic wastes on sulfide mine tailings[J]. Journal of Environmental Management, 2019, 244: 154-160.
|
[17] |
RAKOTONIMARO T V, GUITTONY M, NECULITA C M. Compaction of peat cover over desulfurized gold mine tailings changes: Arsenic speciation and mobility[J]. Applied Geochemistry, 2021, 128: 104923. doi: 10.1016/j.apgeochem.2021.104923
|
[18] |
XIA X, TENG Y, ZHAI Y. Influence of DOM and microbes on Fe biogeochemistry at a riverbank filtration site[J]. Environmental Research, 2023, 216: 114430. doi: 10.1016/j.envres.2022.114430
|
[19] |
陈春羽. DOM对土壤和底泥汞吸附解吸行为的影响[D]. 重庆: 西南大学, 2008.
|
[20] |
VENEGAS A, RIGOL A, VIDAL M. Changes in heavy metal extractability from contaminated soils remediated with organic waste or biochar[J]. Geoderma, 2016, 279: 132-140. doi: 10.1016/j.geoderma.2016.06.010
|
[21] |
GU L, HUANG B, XU Z, et al. Dissolved organic matter as a terminal electron acceptor in the microbial oxidation of steroid estrogen[J]. Environmental Pollution, 2016, 218: 26-33. doi: 10.1016/j.envpol.2016.08.028
|
[22] |
JIA L, WU W, ZHANG J, et al. Insight into heavy metals (Cr and Pb) complexation by dissolved organic matters from biochar: Impact of zero-valent iron[J]. Science of the Total Environment, 2021, 793: 148469. doi: 10.1016/j.scitotenv.2021.148469
|
[23] |
SHAN G, XU J, JIANG Z, et al. The transformation of different dissolved organic matter subfractions and distribution of heavy metals during food waste and sugarcane leaves co-composting[J]. Waste Management, 2019, 87: 636-644. doi: 10.1016/j.wasman.2019.03.005
|
[24] |
COWARD E K, OHNO T, PLANTE A F. Adsorption and molecular fractionation of dissolved organic matter on iron-bearing mineral matrices of varying crystallinity[J]. Environmental Science & Technology, 2018, 52(3): 1036-1044.
|
[25] |
杜尔登, 郭迎庆, 孙悦, 等. 三维荧光结合自组织映射神经网络考察自来水厂有机物去除效果[J]. 光谱学与光谱分析, 2012, 32(7): 1846-1851. doi: 10.3964/j.issn.1000-0593(2012)07-1846-06
|
[26] |
GUO X, XIE X, LIU Y, et al. Effects of digestate DOM on chemical behavior of soil heavy metals in an abandoned copper mining areas[J]. Journal of Hazardous Materials, 2020, 393: 122436. doi: 10.1016/j.jhazmat.2020.122436
|
[27] |
ISHII STEPHANIE K L, TREAVOR B. H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A critical review[J]. Environmental Science & Technology, 2012, 46: 2006-2017.
|
[28] |
任浩宇, 姚昕, 马飞扬. 细菌降解影响下湖泊草源DOM与重金属的相互作用[J]. 中国环境科学, 2020, 40(11): 4989-4997. doi: 10.3969/j.issn.1000-6923.2020.11.041
|
[29] |
KHANG V C, KOROVKIN M V, ANANYEYA L G. Identification of clay minerals in reservoir rocks by FTIR spectroscopy//IOP Conference Series: Earth and Environmental Science[J]. IOP Publishing, 2016, 43(1): 012004.
|
[30] |
ZHANG T, YANG H, ZHANG H, et al. Aluminum extraction from activated coal gangue with carbide slag[J]. Journal of Analytical and Applied Pyrolysis, 2022, 163: 105504. doi: 10.1016/j.jaap.2022.105504
|
[31] |
YIN Y, YIN J, ZHANG W, et al. FT-IR and micro-Raman spectroscopic characterization of minerals in high-calcium coal ashes[J]. Journal of the Energy Institute, 2018, 91(3): 389-396. doi: 10.1016/j.joei.2017.02.003
|
[32] |
KOKILA T, RAMESH P S, GEETHA D. Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: a novel biological approach[J]. Applied Nanoscience, 2015, 5: 911-920. doi: 10.1007/s13204-015-0401-2
|
[33] |
LIANG P, CHEN C, ZHAO S, et al. Application of Fourier transform infrared spectroscopy for the oxidation and peroxide value evaluation in virgin walnut oil[J]. Journal of Spectroscopy, 2013, 2013: 138728.
|
[34] |
XU D M, FU R B. The mechanistic insights into the leaching behaviors of potentially toxic elements from the indigenous zinc smelting slags under the slag dumping site scenario[J]. Journal of Hazardous Materials, 2022, 437: 129368. doi: 10.1016/j.jhazmat.2022.129368
|
[35] |
LU X, HUANG F X, MA J. Removal of trace mercury (II) from aqueous solution by in situ formed Mn–Fe (hydr) oxides[J]. Journal of Hazardous Materials, 2014, 280: 71-78. doi: 10.1016/j.jhazmat.2014.07.056
|
[36] |
ANTIC-MLADENOVIC S, FROHNE T, KRESOVIC M, et al. Redox-controlled release dynamics of thallium in periodically flooded arable soil[J]. Chemosphere, 2017, 178: 268-276. doi: 10.1016/j.chemosphere.2017.03.060
|
[37] |
BELZILE N, CHEN Y W. Thallium in the environment: a critical review focused on natural waters, soils, sediments and airborne particles[J]. Applied Geochemistry, 2017, 84: 218-243. doi: 10.1016/j.apgeochem.2017.06.013
|
[38] |
XIAO T, GU J, BOYLE D. High thallium content in rocks associated with Au–As–Hg–Tl and coal mineralization and its adverse environmental potential in SW Guizhou, China[J]. Geochemistry:Exploration, Environment, Analysis, 2004, 4(3): 243-252. doi: 10.1144/1467-7873/04-204
|
[39] |
ELGHALI A, BENZAAZOUA M, BOUZAHZAH H, et al. Role of secondary minerals in the acid generating potential of weathered mine tailings: Crystal-chemistry characterization and closed mine site management involvement[J]. Science of the Total Environment, 2021, 784: 147105. doi: 10.1016/j.scitotenv.2021.147105
|
[40] |
陈怀满. 土壤中化学物质的行为与环境质量[M]. 北京: 科学出版社, 2002.
|
[41] |
FAN Y, ZHENG C, HUO A, et al. Investigating the binding properties between antimony (V) and dissolved organic matter (DOM) under different pH conditions during the soil sorption process using fluorescence and FTIR spectroscopy[J]. Ecotoxicology and Environmental Safety, 2019, 181: 34-42. doi: 10.1016/j.ecoenv.2019.05.076
|
[42] |
MLADENOV N, ZHENG Y, SIMONE B, et al. Dissolved organic matter quality in a shallow aquifer of Bangladesh: implications for arsenic mobility[J]. Environmental Science & Technology, 2015, 49(18): 10815-10824.
|
[43] |
DEONARINE A, KOLKER A, DOUGHTEN M W, et al. Mobilization of arsenic from coal fly ash in the presence of dissolved organic matter[J]. Applied Geochemistry, 2021, 128: 104950. doi: 10.1016/j.apgeochem.2021.104950
|
[44] |
HU X, GUO X, HE M, et al. pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores[J]. Journal of Environmental Sciences, 2016, 44: 171-179. doi: 10.1016/j.jes.2016.01.003
|
[45] |
UDDIN M K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J]. Chemical Engineering Journal, 2017, 308: 438-462. doi: 10.1016/j.cej.2016.09.029
|
[46] |
LIONS J, VAN D L J, GUERIN V, et al. Zinc and cadmium mobility in a 5-year-old dredged sediment deposit: experiments and modelling[J]. Journal of Soils and Sediments, 2007, 7: 207-215. doi: 10.1065/jss2007.05.226
|
[47] |
ECKLEY C S, LUXTON T P, STANFIELD B, et al. Effect of organic matter concentration and characteristics on mercury mobilization and methylmercury production at an abandoned mine site[J]. Environmental Pollution, 2021, 271: 116369. doi: 10.1016/j.envpol.2020.116369
|
[48] |
LIU J, VALSARAJ K T, DEVAI I, et al. Immobilization of aqueous Hg (II) by mackinawite (FeS)[J]. Journal of Hazardous Materials, 2008, 157(2-3): 432-440. doi: 10.1016/j.jhazmat.2008.01.006
|
[49] |
RANDALL P, CHATTOPADHYAY S. Influence of pH and oxidation-reduction potential (Eh) on the dissolution of mercury-containing mine wastes from the Sulphur Bank Mercury Mine[J]. Mining, Metallurgy & Exploration, 2004, 21: 93-98.
|
[50] |
姚爱军, 青长乐, 牟树森. 腐殖酸对汞的络合稳定特性及其环境学意义[J]. 中国生态农业学报, 2006(3): 138-140.
|