[1] RESITOGLU I A. The effect of biodiesel on activity of diesel oxidation catalyst and selective catalytic reduction catalysts in diesel engine [J]. Renewable and Sustainable Energy Reviews, 2021, 148.
[2] QIE F X, ZHU J Y, RONG J F, et al. Biological removal of nitrogen oxides by microalgae, a promising strategy from nitrogen oxides to protein production[J]. Bioresource Technology, 2019, 292: 122037. doi: 10.1016/j.biortech.2019.122037
[3] GUILLAUME P C, ROBERT M, AKSHAY A, et al. Public health impacts of excess NOx emissions from Volkswagen diesel passenger vehicles in Germany[J]. Environmental Research Letters, 2017, 12(3): 034014. doi: 10.1088/1748-9326/aa5987
[4] MACIEJ S, NICOLE J, ROB B, et al. Long-term exposure to particulate matter, NO2 and the oxidative potential of particulates and diabetes prevalence in a large national health survey[J]. Environment International, 2017, 108: 228-236. doi: 10.1016/j.envint.2017.08.017
[5] GHOLAMI Z, LUO G H, GHOLAMI F, et al. Recent advances in selective catalytic reduction of NOx by carbon monoxide for flue gas cleaning process: a review[J]. Catalysis Reviews - Science and Engineering, 2021, 63(1): 68-119. doi: 10.1080/01614940.2020.1753972
[6] FORZATTI P, NOVA I, TRONCONI E. Enhanced NH3 selective catalytic reduction for NOx abatement[J]. Angewandte Chemie International Edition, 2009, 48(44): 8366-8368. doi: 10.1002/anie.200903857
[7] 刘应书, 张璇, 卞文博, 等. 涂覆型蜂窝体催化剂的制备与烟气一氧化碳催化净化性能 [J]. 复合材料学报, 2022: 1-14.
[8] 赵春林, 马子然, 王宝冬, 等. 固定源废气处理的催化剂涂覆工艺研究进展[J]. 化工进展, 2020, 39(10): 4015-4023. doi: 10.16085/j.issn.1000-6613.2019-2122
[9] KONG X L, QIU M H, WANG A R, et al. Influence of alumina binders on adhesion and cohesion during preparation of Cu‐SAPO‐34/monolith catalysts[J]. International Journal of Applied Ceramic Technology, 2018, 15(6): 1490-1501. doi: 10.1111/ijac.13008
[10] DE-LA-TORRE U, PEREDA-AYO B, MOLINER M, et al. Cu-zeolite catalysts for NOx removal by selective catalytic reduction with NH3 and coupled to NO storage/reduction monolith in diesel engine exhaust aftertreatment systems[J]. Applied Catalysis, B Environmental:An International Journal Devoted to Catalytic Science and Its Applications, 2016, 187(6): 419-427.
[11] 孟鹏通, 范超, 吕文婷, 等. 整体式堇青石负载的Cu-SSZ-13分子筛催化剂的制备及其氨选择性催化还原脱硝性能[J]. 燃料化学学报, 2020, 48(10): 1216-1223.
[12] KLIMCZAK M, KERN P, HEINZELMANN T. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts-Part I: V2O5-WO3/TiO2 catalysts[J]. Applied Catalysis, B Environmental: An International Journal Devoted to Catalytic Science and Its Applications, 2010, 95(1/2): 39-47.
[13] 胡宜康, 徐斌, 曹智焜, 等. Cu基分子筛催化剂抗中毒性能的研究进展[J]. 应用化工, 2020, 49(1): 171-176. doi: 10.16581/j.cnki.issn1671-3206.20191104.005
[14] ROUSTAPISHEH M, KARAMI D, MAHINPEY N. The fabrication of Ce promoted Ni/Mg/Al mixed oxides hydrotalcite washcoated alloy, monolith catalyst for catalytic steam cracking of vacuum gas oil [J]. Catalysis Today, 2021.
[15] 朱恒, 董长青, 王晓东, 等. V-Mo/TiO2堇青石负载型脱硝催化剂的制备和性能[J]. 环境工程, 2020, 38(9): 168-174.
[16] DONG G J, ZHANG Y F, ZHAO Y, et al. Effect of the pH value of precursor solution on the catalytic performance of V2O5-WO3/TiO2 in the low temperature NH3-SCR of NOx[J]. Journal of Fuel Chemistry and Technology, 2014, 42(12): 1455-1463. doi: 10.1016/S1872-5813(15)60003-2
[17] LI F K, SHEN B X, TIAN L H, et al. Enhancement of SCR activity and mechanical stability on cordierite supported V2O5-WO3/TiO2 catalyst by substrate acid pretreatment and addition of silica[J]. Powder Technology:An International Journal on the Science and Technology of Wet and Dry Particulate Systems, 2016, 297: 384-391.
[18] 梁银, 洪武, 于飞, 等. 碱性环境制备V-SCR催化剂提升De-NOx性能[J]. 工业催化, 2021, 29(5): 54-58. doi: 10.3969/j.issn.1008-1143.2021.05.009
[19] 李富宽, 沈伯雄, 田灵辉, 等. 堇青石负载V2O5-WO3-TiO2方法比较[J]. 环境工程学报, 2016, 10(9): 5016-5022. doi: 10.12030/j.cjee.201601047
[20] SHEN M Q, XU L L, WANG J Q, et al. Effect of synthesis methods on activity of V2O5/CeO2/WO3-TiO2 catalyst for selective catalytic reduction of NOx with NH3[J]. Journal of Rare Earths, 2016, 34(3): 259-267. doi: 10.1016/S1002-0721(16)60023-6
[21] ZHAO K, HAN W L, TANG Z C, et al. Investigation of coating technology and catalytic performance over monolithic V2O5-WO3/TiO2 catalyst for selective catalytic reduction of NOx with NH3[J]. Colloids and Surfaces, A Physicochemical and Engineering Aspects, 2016, 503(8): 53-60.
[22] AGRAFIOTIS C, TSETSEKOU A. The effect of powder characteristics on washcoat quality. Part I: Alumina washcoats[J]. Journal of the European Ceramic Society, 2000, 20(7): 815-824. doi: 10.1016/S0955-2219(99)00218-6
[23] MITRA B, KUNZRU D. Washcoating of different zeolites on cordierite monoliths[J]. Journal of the American Ceramic Society, 2008, 91(1): 64-70.
[24] HUANG G F, GUO X L, HAN Y F, et al. Effect of extrusion dies angle on the microstructure and properties of (TiB+TiC)/Ti6Al4V in situ titanium matrix composite[J]. Materials Science & Engineering, A Structural Materials:Properties, Misrostructure and Processing, 2016, 667: 317-325.
[25] LIU Z M, ZHANG S X, LI J H, et al. Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NO by NH3[J]. Applied Catalysis B:Environmental, 2014, 158-159: 11-19. doi: 10.1016/j.apcatb.2014.03.049
[26] LIU S, YAO P, PEI M M, et al. Significant differences of NH3-SCR performances between monoclinic and hexagonal WO3 on Ce-based catalysts[J]. Environmental Science:Nano, 2021, 8(10): 2988-3000. doi: 10.1039/D1EN00519G
[27] RUSSO N, FINO D, SARACCO G, et al. Studies on the redox properties of chromite perovskite catalysts for soot combustion[J]. Journal of Catalysis, 2005, 229(2): 459-469. doi: 10.1016/j.jcat.2004.11.025
[28] WANG X X, CONG Q L, CHEN L, et al. The alkali resistance of CuNbTi catalyst for selective reduction of NO by NH3: A comparative investigation with VWTi catalyst[J]. Applied Catalysis B:Environmental, 2019, 246: 166-179. doi: 10.1016/j.apcatb.2019.01.049
[29] HU W S, ZHANG Y H, LIU S J, et al. Improvement in activity and alkali resistance of a novel V-Ce(SO4)2/Ti catalyst for selective catalytic reduction of NO with NH3[J]. Applied Catalysis B:Environmental, 2017, 206: 449-460. doi: 10.1016/j.apcatb.2017.01.036
[30] ZHAO X, HUANG L, LI H R, et al. Promotional effects of zirconium doped CeVO4 for the low-temperature selective catalytic reduction of NOx with NH3[J]. Applied Catalysis B: Environmental, 2016, 183: 269-281. doi: 10.1016/j.apcatb.2015.10.052
[31] KWON D W, LEE S, KIM J, et al. Influence of support composition on enhancing the performance of Ce-V on TiO2 comprised tungsten-silica for NH3-SCR[J]. Catalysis Today, 2021, 359: 112-123. doi: 10.1016/j.cattod.2019.07.002
[32] BONINGARI T, KOIRALA R, SMIRNIOTIS P G. Low-temperature catalytic reduction of NO by NH3 over vanadia-based nanoparticles prepared by flame-assisted spray pyrolysis: Influence of various supports[J]. Applied Catalysis B:Environmental, 2013, 140-141: 289-298. doi: 10.1016/j.apcatb.2013.04.033
[33] XIONG Z B, LI Z Z, LI C X, et al. Starch bio-template synthesis of W-doped CeO2 for selective catalytic reduction of NO with NH3: Influence of ammonia titration [J]. Journal of Physics and Chemistry of Solids, 2021, 148.
[34] 赵梦梦, 陈梦寅, 张鹏举, 等. 共沉淀法掺杂SiO2对V2O5-WO3/TiO2 催化剂SCR性能的影响[J]. 分子催化, 2017, 31(3): 223-235.
[35] WANG Y G, LI B, ZHANG C L, et al. Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation[J]. Applied Catalysis B:Environmental, 2013, 130-131: 277-284. doi: 10.1016/j.apcatb.2012.11.019
[36] YAO X J, ZHANG L, LI L L, et al. Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature[J]. Applied Catalysis B:Environmental, 2014, 150-151: 315-329. doi: 10.1016/j.apcatb.2013.12.007
[37] NI K W, PENG Y W, DAI G Y, et al. Ceria accelerates ammonium bisulfate decomposition for improved SO2 resistance on a V2O5-WO3/TiO2 catalyst in low-temperature NH3-SCR [J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 140.
[38] ZHENG L, ZIMINA A, CASAPU M, et al. Hydrocarbon and soot oxidation over cerium and iron doped vanadium SCR catalysts[J]. ChemCatChem, 2020, 12(24): 6272-6284. doi: 10.1002/cctc.202001314
[39] 胡文硕, 邹任智, 董毅, 等. 钒钨铈催化剂的低温SCR反应机理研究[J]. 工程热物理学报, 2021, 42(1): 239-245.
[40] WANG X M, DU X S, ZHANG L, et al. Promotion of NH4HSO4 decomposition in NO/NO2 contained atmosphere at low temperature over V2O5-WO3/TiO2 catalyst for NO reduction[J]. Applied Catalysis A:General, 2018, 559: 112-121. doi: 10.1016/j.apcata.2018.04.025
[41] 钟毓秀, 尹子骏, 苏胜, 等. WO3/TiO2 催化剂活性组分W对SO2的氧化特性[J]. 洁净煤技术, 2022, 28(10): 136-144.
[42] 余岳溪, 廖永进, 束航, 等. SO2与H2O对商用钒钨钛脱硝催化剂毒化作用综述[J]. 中国电力, 2016, 49(12): 168-173.
[43] CHEN M Y, ZHAO M M, TANG F S, et al. Effect of Ce doping into V2O5-WO3/TiO2 catalysts on the selective catalytic reduction of NOx by NH3[J]. Journal of Rare Earths, 2017, 35(12): 1206-1215. doi: 10.1016/j.jre.2017.06.004
[44] 刘雪松, 汪澜, 房晶瑞, 等. 水热处理和钨添加对低钒催化剂高温脱硝性能的影响[J]. 化工进展, 2020, 29(4): 1363-1370. doi: 10.16085/j.issn.1000-6613.2019-1121
[45] GUO M Y, LIU Q L, LIU C X, et al. Rational design of novel CrZrO catalysts for efficient low temperature SCR of NO [J]. Chemical Engineering Journal, 2021, 413.
[46] 张道军, 马子然, 孙琦, 等. 选择催化还原(SCR)反应机理研究进展[J]. 化工进展, 2019, 38(4): 1611-1623. doi: 10.16085/j.issn.1000-6613.2018-1195
[47] ZHANG L, WANG D, LIU Y, et al. SO2 poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst[J]. Applied Catalysis B:Environmental, 2014, 156-157: 371-377. doi: 10.1016/j.apcatb.2014.03.030
[48] PAN S W, LUO H C, LI L, et al. H2O and SO2 deactivation mechanism of MnOx/MWCNTs for low-temperature SCR of NOx with NH3[J]. Journal of Molecular Catalysis A:Chemical, 2013, 377: 154-161. doi: 10.1016/j.molcata.2013.05.009
[49] LEE K J, KUMAR P A, MAQBOOL M S, et al. Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3-SCR: Physico-chemical properties and catalytic activity[J]. Applied Catalysis B:Environmental, 2013, 142-143: 705-717. doi: 10.1016/j.apcatb.2013.05.071
[50] WANG Y Z, YI W, YU J, et al. Novel methods for assessing the SO2 poisoning effect and thermal regeneration possibility of MOx-WO3/TiO2 (M = Fe, Mn, Cu, and V) catalysts for NH3-SCR[J]. Environmental Science and Technology, 2020, 54(19): 12612-12620. doi: 10.1021/acs.est.0c02840
[51] LI X, LI X S, LI J H, et al. High calcium resistance of CeO2 –WO3 SCR catalysts: Structure investigation and deactivation analysis[J]. Chemical Engineering Journal, 2017, 317: 70-79. doi: 10.1016/j.cej.2017.02.027