[1] |
BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513-541. doi: 10.1002/ieam.258
|
[2] |
HUA Z L, YU L, LIU X D, et al. Perfluoroalkyl acids in surface sediments from the Lower Yangtze River: Occurrence, distribution, sources, inventory, and risk assessment[J]. Science of the Total Environment, 2021, 798: 149332. doi: 10.1016/j.scitotenv.2021.149332
|
[3] |
FANG S H, LI C, ZHU L Y, et al. Spatiotemporal distribution and isomer profiles of perfluoroalkyl acids in airborne particulate matter in Chengdu City, China[J]. Science of the Total Environment, 2019, 689: 1235-1243. doi: 10.1016/j.scitotenv.2019.06.498
|
[4] |
GLÜGE J, SCHERINGER M, COUSINS I T, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS)[J]. Environmental Science Processes & Impacts, 2020, 22(12): 2345-2373.
|
[5] |
HU X Z, HU D C. Effects of perfluorooctanoate and perfluorooctane sulfonate exposure on hepatoma Hep G2 cells[J]. Archives of Toxicology, 2009, 83(9): 851-861. doi: 10.1007/s00204-009-0441-z
|
[6] |
CAI M H, ZHAO Z, YANG H Z, et al. Spatial distribution of per- and polyfluoroalkyl compounds in coastal waters from the East to South China Sea[J]. Environmental Pollution, 2012, 161: 162-169. doi: 10.1016/j.envpol.2011.09.045
|
[7] |
LI J F, HE J H, NIU Z G, et al. Legacy per- and polyfluoroalkyl substances (PFASs) and alternatives (short-chain analogues, F-53B, GenX and FC-98) in residential soils of China: Present implications of replacing legacy PFASs[J]. Environment International, 2020, 135: 105419. doi: 10.1016/j.envint.2019.105419
|
[8] |
WANG Z Y, COUSINS I T, SCHERINGER M, et al. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors[J]. Environment International, 2013, 60: 242-248. doi: 10.1016/j.envint.2013.08.021
|
[9] |
丁达, 宋昕, 刘朝阳, 等. 某化工园区周边土壤中传统和新兴全氟化合物的赋存特征及潜在来源[J]. 土壤, 2021, 53(4): 779-787.
DING D, SONG X, LIU Z Y, et al. Occurrence and possible source of legacy and emerging perfluoroalkyl substances in soil near a chemical industrial park[J]. Soils, 2021, 53(4): 779-787 (in Chinese).
|
[10] |
温祥洁, 陈朝辉, 徐维新, 等. 青藏高原东北部地区表层土壤中全氟化合物的分布特征及来源解析[J]. 环境科学, 2022, 43(6): 3253-3261.
WEN X J, CHEN Z H, XU W X, et al. Distribution characteristics and source apportionment of perfluoroalkyl substances in surface soils of the northeast Tibetan Plateau[J]. Environmental Science, 2022, 43(6): 3253-3261 (in Chinese).
|
[11] |
谭少军, 刘洋, 朱小婕, 等. 长江上游平原丘陵区农业非点源污染输出特征和驱动机制[J]. 环境科学, 2022, 43(6): 3128-3139.
TAN S J, LIU Y, ZHU X J, et al. Output characteristics and driving mechanism of agricultural non-point source (AGNPS) pollutant in plain and valley region of Upper Yangtze River, China[J]. Environmental Science, 2022, 43(6): 3128-3139 (in Chinese).
|
[12] |
李杰, 翟亮, 桑会勇, 等. PM2.5浓度插值中不同空间插值方法对比[J]. 测绘科学, 2016, 41(4): 50-54, 101.
LI J, ZHAI L, SANG H Y, et al. Comparison of different spatial interpolation methods for PM2.5[J]. Science of Surveying and Mapping, 2016, 41(4): 50-54, 101 (in Chinese).
|
[13] |
BRUSSEAU M L, ANDERSON R H, GUO B. PFAS concentrations in soils: Background levels versus contaminated sites[J]. Science of the Total Environment, 2020, 740: 140017. doi: 10.1016/j.scitotenv.2020.140017
|
[14] |
LIU Z Y, LU Y L, SHI Y J, et al. Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China[J]. Environment International, 2017, 106: 37-47. doi: 10.1016/j.envint.2017.05.014
|
[15] |
高燕, 傅建捷, 王亚韡, 等. 全氟化工厂土芯中全氟化合物的分布规律[J]. 环境化学, 2014, 33(10): 1686-1691. doi: 10.7524/j.issn.0254-6108.2014.10.006
GAO Y, FU J J, WANG Y W, et al. Spatial and vertical distribution of perfluoroalkyl substances in soil cores around manufacturing facilities in China[J]. Environmental Chemistry, 2014, 33(10): 1686-1691 (in Chinese). doi: 10.7524/j.issn.0254-6108.2014.10.006
|
[16] |
ZHANG G Z, PAN Z K, WU Y M, et al. Distribution of perfluorinated compounds in surface water and soil in partial areas of Shandong Province, China[J]. Soil and Sediment Contamination: an International Journal, 2019, 28(5): 502-512. doi: 10.1080/15320383.2019.1635079
|
[17] |
郑宇, 路国慧, 邵鹏威, 等. 青藏高原东部过渡区水环境中全氟化合物的分布特征[J]. 环境化学, 2020, 39(5): 1192-1201. doi: 10.7524/j.issn.0254-6108.2019081506
ZHENG Y, LU G H, SHAO P W, et al. Level and distribution of perfluorinated compounds in snow and water samples from the transition zone in eastern Qinghai-Tibet[J]. Environmental Chemistry, 2020, 39(5): 1192-1201 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019081506
|
[18] |
JIN H B, SHAN G Q, ZHU L Y, et al. Perfluoroalkyl acids including isomers in tree barks from a Chinese fluorochemical manufacturing park: Implication for airborne transportation[J]. Environmental Science & Technology, 2018, 52(4): 2016-2024.
|
[19] |
ZHAO N, ZHAO M R, LIU W P, et al. Atmospheric particulate represents a source of C8-C12 perfluoroalkyl carboxylates and 10: 2 fluorotelomer alcohol in tree bark[J]. Environmental Pollution, 2021, 273: 116475. doi: 10.1016/j.envpol.2021.116475
|
[20] |
武倩倩, 吴强, 宋帅, 等. 天津市主要河流和土壤中全氟化合物空间分布、来源及风险评价[J]. 环境科学, 2021, 42(8): 3682-3694.
WU Q Q, WU Q, SONG S, et al. Distribution, sources, and risk assessment of polyfluoroalkyl substances in main rivers and soils of Tianjin[J]. Environmental Science, 2021, 42(8): 3682-3694 (in Chinese).
|
[21] |
何宗健, 甘甜, 彭希珑, 等. 环鄱阳湖城市污水处理厂污泥中全氟化合物的污染特征[J]. 南昌大学学报(工科版), 2020, 42(2): 103-108.
HE Z J, GAN T, PENG X L, et al. Pollution characteristics of perfluorinated compounds in sludge from urban wastewater treatment plants around Poyang Lake[J]. Journal of Nanchang University (Engineering & Technology), 2020, 42(2): 103-108 (in Chinese).
|
[22] |
LIN Y, JIANG J J, RODENBURG L A, et al. Perfluoroalkyl substances in sediments from the Bering Sea to the western Arctic: Source and pathway analysis[J]. Environment International, 2020, 139: 105699. doi: 10.1016/j.envint.2020.105699
|
[23] |
曾士宜, 杨鸿波, 彭洁, 等. 贵州草海湖泊表层水与沉积物中全氟化合物的污染特征及风险评估[J]. 环境化学, 2021, 40(4): 1193-1205. doi: 10.7524/j.issn.0254-6108.2020072404
ZENG S Y, YANG H B, PENG J, et al. Pollution characteristics and risk assessment of perfluorinated compounds in surface water and sediments of Caohai Lake of Guizhou Province[J]. Environmental Chemistry, 2021, 40(4): 1193-1205 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020072404
|
[24] |
NA S T, HAI R T, WANG X H, et al. Trends and levels of perfluorinated compounds in soil and sediment surrounding a cluster of metal plating industries[J]. Soil and Sediment Contamination: An International Journal, 2021, 30(4): 423-435. doi: 10.1080/15320383.2020.1863908
|
[25] |
FANG S H, SHA B, YIN H L, et al. Environment occurrence of perfluoroalkyl acids and associated human health risks near a major fluorochemical manufacturing park in southwest of China[J]. Journal of Hazardous Materials, 2020, 396: 122617. doi: 10.1016/j.jhazmat.2020.122617
|
[26] |
孙慧, 郭治兴, 郭颖, 等. 广东省土壤Cd含量空间分布预测[J]. 环境科学, 2017, 38(5): 2111-2124.
SUN H, GUO Z X, GUO Y, et al. Prediction of distribution of soil Cd concentrations in Guangdong Province, China[J]. Environmental Science, 2017, 38(5): 2111-2124 (in Chinese).
|
[27] |
王菲, 吴泉源, 吕建树, 等. 山东省典型金矿区土壤重金属空间特征分析与环境风险评估[J]. 环境科学, 2016, 37(8): 3144-3150.
WANG F, WU Q Y, LÜ J S, et al. Spatial characteristics and environmental risk of heavy metals in typical gold mining area of Shandong Province[J]. Environmental Science, 2016, 37(8): 3144-3150 (in Chinese).
|
[28] |
白一茹, 张兴, 赵云鹏, 等. 基于GIS和受体模型的枸杞地土壤重金属空间分布特征及来源解析[J]. 环境科学, 2019, 40(6): 2885-2894.
BAI Y R, ZHANG X, ZHAO Y P, et al. Spatial distribution characteristics and source apportionment of soil heavy metals in Chinese wolfberry land based on GIS and the receptor model[J]. Environmental Science, 2019, 40(6): 2885-2894 (in Chinese).
|
[29] |
叶冬芬, 叶桥龙, 罗玮琛. 基于高斯扩散模型的化工危险品泄露区域计算及其实现[J]. 计算机与应用化学, 2012, 29(2): 195-199. doi: 10.3969/j.issn.1001-4160.2012.02.016
YE D F, YE Q L, LUO W C. A calculation approach and implementation of hazard chemical substance based on Gaussian diffusion model[J]. Computers and Applied Chemistry, 2012, 29(2): 195-199 (in Chinese). doi: 10.3969/j.issn.1001-4160.2012.02.016
|
[30] |
倪健, 王占益. 基于高斯模型的城市大气污染物溯源模拟[J]. 电脑知识与技术, 2021, 17(29): 8-11.
NI J, WANG Z Y. Simulation of air pollution dispersion in Handan city based on Gaussian model[J]. Computer Knowledge and Technology, 2021, 17(29): 8-11 (in Chinese).
|
[31] |
SINI J F, ANQUETIN S, MESTAYER P G. Pollutant dispersion and thermal effects in urban street canyons[J]. Atmospheric Environment, 1996, 30(15): 2659-2677. doi: 10.1016/1352-2310(95)00321-5
|
[32] |
周广峰, 刘欣. 主成分分析法在水环境质量评价中的应用进展[J]. 环境科学导刊, 2011, 30(1): 75-78. doi: 10.3969/j.issn.1673-9655.2011.01.021
ZHOU G F, LIU X. Progress of principal component analysis method in water quality assessment[J]. Environmental Science Survey, 2011, 30(1): 75-78 (in Chinese). doi: 10.3969/j.issn.1673-9655.2011.01.021
|
[33] |
于林松, 万方, 范海印, 等. 姜湖贡米产地土壤重金属空间分布、源解析及生态风险评价[J]. 环境科学, 2022, 43(8): 4199-4211.
YU L S, WAN F, FAN H Y, et al. Spatial distribution, source apportionment, and ecological risk assessment of soil heavy metals in jianghugongmi producing area, Shandong Province[J]. Environmental Science, 2022, 43(8): 4199-4211 (in Chinese).
|
[34] |
陈志凡, 化艳旭, 徐薇, 等. 基于正定矩阵因子分析模型的城郊农田重金属污染源解析[J]. 环境科学学报, 2020, 40(1): 276-283. doi: 10.13671/j.hjkxxb.2019.0380
CHEN Z F, HUA Y X, XU W, et al. Analysis of heavy metal pollution sources in suburban farmland based on positive definite matrix factor model[J]. Acta Scientiae Circumstantiae, 2020, 40(1): 276-283 (in Chinese). doi: 10.13671/j.hjkxxb.2019.0380
|
[35] |
SUN R, WU M H, TANG L, et al. Perfluorinated compounds in surface waters of Shanghai, China: Source analysis and risk assessment[J]. Ecotoxicology and Environmental Safety, 2018, 149: 88-95. doi: 10.1016/j.ecoenv.2017.11.012
|
[36] |
刘宝林, 张鸿, 谢刘伟, 等. 东江流域表层土中全氟化合物的空间分布及来源解析[J]. 地球与环境, 2015, 43(3): 302-307.
LIU B L, ZHANG H, XIE L W, et al. Spatial distribution and source of perfluorinated compounds in surface soils around the Dongjiang River[J]. Earth and Environment, 2015, 43(3): 302-307 (in Chinese).
|
[37] |
LIU W X, HE W, QIN N, et al. Temporal-spatial distributions and ecological risks of perfluoroalkyl acids (PFAAs) in the surface water from the fifth-largest freshwater lake in China (Lake Chaohu)[J]. Environmental Pollution, 2015, 200: 24-34. doi: 10.1016/j.envpol.2015.01.028
|
[38] |
OECD Guideline for the testing of chemicals, Section 1: adsorption-desorption using a batch equilibrium method [R]. Organization for Economic Co-operation and Development, 2000.
|
[39] |
ZHONG H F, ZHENG M G, LIANG Y, et al. Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in sediments from the East China Sea and the Yellow Sea: Occurrence, source apportionment and environmental risk assessment[J]. Chemosphere, 2021, 282: 131042. doi: 10.1016/j.chemosphere.2021.131042
|
[40] |
王宗爽, 段小丽, 刘平, 等. 环境健康风险评价中我国居民暴露参数探讨[J]. 环境科学研究, 2009, 22(10): 1164-1170.
WANG Z S, DUAN X L, LIU P, et al. Human exposure factors of Chinese people in environmental health risk assessment[J]. Research of Environmental Sciences, 2009, 22(10): 1164-1170 (in Chinese).
|
[41] |
BRAND E, OTTE P F, LIJZEN J P A, et al. CSOIL 2000 an exposure model for human risk assesment of soil contamination. A model description[R]. Bilthoven: National Institute of Public Health and the Environmen, 2007.
|
[42] |
宋从波, 刘茂, 姜珊珊, 等. 基于CSOIL模型的村镇土壤重金属人体暴露风险评估[J]. 安全与环境学报, 2014, 14(1): 248-252.
SONG C B, LIU M, JIANG S S, et al. Assessment research on the human exposure risk to heavy metal pollutants from the soil in rural areas based on CSOIL[J]. Journal of Safety and Environment, 2014, 14(1): 248-252 (in Chinese).
|
[43] |
KNUTSEN H K, ALEXANDER J, et al. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food[J]. EFSA Journal, 2018, 16(12): 5194.
|
[44] |
Food Standards Australia and New Zealand. Hazard assessment report - perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS) [R]. 2017.
|
[45] |
Danish Environmental Protection Agency. Perfluoroalkylated substances: PFOA, PFOS and PFOSA. evaluation of health hazards and proposal of a health-based quality criterion for drinking water, soil and ground water [R]. 2015.
|
[46] |
Minnesota Department of Health. Toxicological summary for: Perfluorooctanoate[R]. Minnesota, USA: Minnesota Department of Health, 2018a.
|
[47] |
Minnesota Department of Health. Toxicological summary for: Perfluorobutanoate [R]. Minnesota, USA: Minnesota Department of Health, 2018b.
|
[48] |
Minnesota Department of Health. Toxicological summary for: Perfluorooctane sulfonate [R]. Minnesota, USA: Minnesota Department of Health, 2019.
|
[49] |
USEPA. Technical fact sheet – perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) [R]. United States Environmental Protection Agency, 2017.
|