[1] |
YANG Y H, SHI Y, SUN W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Science China-Life Sciences, 2022, 65(5): 861-895. doi: 10.1007/s11427-021-2045-5
|
[2] |
LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627. doi: 10.1126/science.1097396
|
[3] |
BINGHAM A H, COTRUFO M F. Organic nitrogen storage in mineral soil: Implications for policy and management[J]. Science of the Total Environment, 2016, 551/552: 116-126. doi: 10.1016/j.scitotenv.2016.02.020
|
[4] |
LORENZ K, LAL R. Biogeochemical C and N cycles in urban soils[J]. Environment International, 2009, 35(1): 1-8. doi: 10.1016/j.envint.2008.05.006
|
[5] |
钟聪, 李小洁, 何园燕, 等. 广西土壤有机质空间变异特征及其影响因素研究[J]. 地理科学, 2020, 40(3): 478-485.
ZHONG C, Li X J, He Y Y, et al. Spatial variation of soil organic matter and its influencing factors in Guangxi, China[J]. Scientia Geographica Sinica, 2020, 40(3): 478-485(in Chinese).
|
[6] |
王艺杰, 于丽君, 张稳, 等. 造林后表层土壤有机碳变化及影响因素分析[J]. 地理与地理信息科学, 2022, 38(2): 103-111.
WANG Y J, YU L J, ZHANG W, et al. Analysis on changes of topsoil organic carbon after afforestation and the influencing factors[J]. Geography and Geo-Information Science, 2022, 38(2): 103-111(in Chinese).
|
[7] |
TEWKSBURY C E, VAN MIEGROET H. Soil organic carbon dynamics along a climatic gradient in a southern Appalachian spruce–fir forest[J]. Canadian Journal of Forest Research, 2007, 37(7): 1161-1172. doi: 10.1139/X06-317
|
[8] |
PETER P C. Soil organic matter/carbon dynamics in contrasting tillage and land management systems: A case for smallholder farmers with degraded and marginal soils[J]. Communications in Soil Science and Plant Analysis, 2017, 48(17): 2013-2031. doi: 10.1080/00103624.2017.1406099
|
[9] |
张青青, 伍海兵, 梁晶. 上海市绿地表层土壤有机碳储量的估算[J]. 土壤, 2020, 52(4): 819-824.
ZHANG Q Q, WU H B, LIANG J. Estimation of storage of organic carbon in green surface soils in Shanghai[J]. Soils, 2020, 52(4): 819-824(in Chinese).
|
[10] |
FELIPE-LUCIA M R, SOLIVERES S, PENONE C, et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(45): 28140-28149.
|
[11] |
ZHAO B H, LI Z B, LI P, et al. Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau, China[J]. Geoderma, 2017, 296: 10-17. doi: 10.1016/j.geoderma.2017.02.010
|
[12] |
刘涛泽, 刘丛强, 张伟, 等. 喀斯特地区坡地土壤有机碳的分布特征和 δ13C值组成差异[J]. 水土保持学报, 2008, 22(5): 115-118, 124.
LIU T Z, LIU C Q, ZHANG W, et al. Spatial distribution characteristics of soil organic carbon and difference in stable carbon isotope composition in slopes of Karst areas[J]. Journal of Soil and Water Conservation, 2008, 22(5): 115-118, 124(in Chinese).
|
[13] |
LI Y, WU J S, LIU S L, et al. Is the C: N: P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China? [J]. Global Biogeochemical Cycles, 2012, 26(4): GB4002.
|
[14] |
郭雯, 黄林培, 王明果, 等. 不同组织碳、氮元素含量和同位素分馏特征研究: 以抚仙湖草鱼、鱇浪白鱼为例[J]. 中国环境科学, 2022, 42(1): 345-355.
GUO W, HUANG L P, WANG M G, et al. Carbon and nitrogen contents and isotopic fractionation in different tissues of Ctenopharyngodon idellus and Anabarilius grahami in Fuxian Lake[J]. China Environmental Science, 2022, 42(1): 345-355(in Chinese).
|
[15] |
WANG X Y, ZHAO L X, COMEAU L P, et al. Divergent carbon stabilization pathways in aggregates in Ultisols with and without organic amendments: Implications from 13C natural abundance and NMR analysis[J]. Geoderma, 2022, 426: 116088. doi: 10.1016/j.geoderma.2022.116088
|
[16] |
于贵瑞, 王绍强, 陈泮勤, 等. 碳同位素技术在土壤碳循环研究中的应用[J]. 地球科学进展, 2005, 20(5): 568-577.
YU G R, WANG S Q, CHEN P Q, et al. Isotope tracer approaches in soil organic carbon cycle research[J]. Advances in Earth Science, 2005, 20(5): 568-577(in Chinese).
|
[17] |
王毛兰, 赖建平, 胡珂图, 等. 鄱阳湖湿地土壤有机碳氮同位素特征及其环境意义[J]. 中国环境科学, 2016, 36(2): 500-505.
WANG M L, LAI J P, HU K T, et al. Compositions of stable organic carbon and nitrogen isotopes in wetland soil of Poyang Lake and its environmental implications[J]. China Environmental Science, 2016, 36(2): 500-505(in Chinese).
|
[18] |
廖宇琴, 龙娟, 木志坚, 等. 重庆农田土壤有机碳稳定性同位素空间分布特征[J]. 环境科学, 2022, 43(6): 3348-3356.
LIAO Y Q, LONG J, MU Z J, et al. Spatial characterization of stable isotope composition of organic carbon from farmland soils in Chongqing[J]. Environmental Science, 2022, 43(6): 3348-3356(in Chinese).
|
[19] |
李龙波, 涂成龙, 赵志琦, 等. 黄土高原不同植被覆盖下土壤有机碳的分布特征及其同位素组成研究[J]. 地球与环境, 2011, 39(4): 441-449.
LI L B, TU C L, ZHAO Z Q, et al. Distribution characteristics of soil organic carbon and its isotopic composition for soil profiles of Loess Plateau under different vegetation conditions[J]. Earth and Environment, 2011, 39(4): 441-449(in Chinese).
|
[20] |
朱书法, 刘丛强, 陶发祥, 等. 喀斯特地区土壤有机质的稳定碳同位素地球化学特征[J]. 地球与环境, 2006, 34(3): 51-58.
ZHU S F, LIU C Q, TAO F X, et al. Geochemical characteristics of stable carbon isotopes in soil organic matter from karst areas[J]. Earth and Environment, 2006, 34(3): 51-58(in Chinese).
|
[21] |
汪智军, 梁轩, 贺秋芳, 等. 岩溶区不同植被类型下的土壤氮同位素分异特征[J]. 生态学报, 2011, 31(17): 4970-4976.
WANG Z J, LIANG X, HE Q F, et al. Differential characteristics of soil δ15N under varying vegetation in karst areas[J]. Acta Ecologica Sinica, 2011, 31(17): 4970-4976(in Chinese).
|
[22] |
BILLY C, BILLEN G, SEBILO M, et al. Nitrogen isotopic composition of leached nitrate and soil organic matter as an indicator of denitrification in a sloping drained agricultural plot and adjacent uncultivated riparian buffer strips[J]. Soil Biology and Biochemistry, 2010, 42(1): 108-117. doi: 10.1016/j.soilbio.2009.09.026
|
[23] |
郭松, 王立发, 马海欧, 等. 滇东地区土壤剖面氮同位素垂直分异及空间分异特征[J]. 环境化学, 2018, 37(2): 279-286. doi: 10.7524/j.issn.0254-6108.2017061301
GUO S, WANG L F, MA H O, et al. Vertical distribution and spatial differentiation characteristics of nitrogen isotope in soil profile of Eastern Region of Yunnan Province[J]. Environmental Chemistry, 2018, 37(2): 279-286(in Chinese). doi: 10.7524/j.issn.0254-6108.2017061301
|
[24] |
何高迅, 王越, 彭淑娴, 等. 滇中退化山地不同植被恢复下土壤碳氮磷储量与生态化学计量特征[J]. 生态学报, 2020, 40(13): 4425-4435.
HE G X, WANG Y, PENG S X, et al. Soil carbon, nitrogen and phosphorus stocks and ecological stoichiometry characteristics of different vegetation restorations in degraded mountainous area of central Yunnan, China[J]. Acta Ecologica Sinica, 2020, 40(13): 4425-4435(in Chinese).
|
[25] |
崔姗姗, 李占彬, 朱平, 等. 贵州遵义地区镉大气沉降通量与表层土壤分布特征[J]. 环境化学, 2022, 41(4): 1324-1334. doi: 10.7524/j.issn.0254-6108.2020122001
CUI S S, LI Z B, ZHU P, et al. Atmospheric deposition flux of cadmium and distribution characteristics of surface soil in Zunyi, Guizhou[J]. Environmental Chemistry, 2022, 41(4): 1324-1334(in Chinese). doi: 10.7524/j.issn.0254-6108.2020122001
|
[26] |
陈蓉, 王明果, 黄林培, 等. 滇池浮游植物碳氮同位素时空分布特征及其影响因子分析[J]. 中国环境科学, 2022, 42(2): 843-853.
CHEN R, WANG M G, HUANG L P, et al. Spatio-temporal distribution and influencing factors of stable carbon and nitrogen isotopes of phytoplankton in Dianchi Lake[J]. China Environmental Science, 2022, 42(2): 843-853(in Chinese).
|
[27] |
全国土壤普查办公室. 中国土壤普查技术[M]. 北京: 农业出版社, 1992.
National Soil Census Office. Soil census technology in China[M]. Beijing: Agricultural Publishing House, 1992(in Chinese).
|
[28] |
张明, 潘国林, 张宗应, 等. 我国部分城市绿地土壤肥力质量分析与评价[J]. 内蒙古农业大学学报(自然科学版), 2019, 40(3): 46-51.
ZHANG M, PAN G L, ZHANG Z Y, et al. Soil fertility quality analysis and evaluation in some urban green space of China[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2019, 40(3): 46-51(in Chinese).
|
[29] |
李忠佩, 张桃林, 陈碧云, 等. 红壤稻田土壤有机质的积累过程特征分析[J]. 土壤学报, 2003, 40 (3): 344-352.
LI Z P, ZHANG T L, CHEN B Y, et al. Soil organic matter dynamics in a cultivation chronosequence of paddy fields in subtropical China[J]. Acta Pedologica Sinica, 2003, 40 (3): 344-352(in Chinese).
|
[30] |
邬建红, 潘剑君, 葛序娟, 等. 不同土地利用方式下土壤有机碳矿化及其温度敏感性[J]. 水土保持学报, 2015, 29(3): 130-135.
WU J H, PAN J J, GE X J, et al. Variations of soil organic carbon mineralization and temperature sensitivity under different land use types[J]. Journal of Soil and Water Conservation, 2015, 29(3): 130-135(in Chinese).
|
[31] |
廖洪凯, 龙健, 李娟. 土地利用方式对喀斯特山区土壤养分及有机碳活性组分的影响[J]. 自然资源学报, 2012, 27(12): 2081-2090.
LIAO H K, LONG J, LI J. Effects of different land use patterns on soil nutrients and soil active organic carbon components in karst mountain area[J]. Journal of Natural Resources, 2012, 27(12): 2081-2090(in Chinese).
|
[32] |
黄锦学, 黄李梅, 林智超, 等. 中国森林凋落物分解速率影响因素分析[J]. 亚热带资源与环境学报, 2010, 5(3): 56-63.
HUANG J X, HUANG L M, LIN Z C, et al. Controlling factors of litter decomposition rate in China’s forests[J]. Journal of Subtropical Resources and Environment, 2010, 5(3): 56-63(in Chinese).
|
[33] |
李紫燕, 李世清, 李生秀. 黄土高原典型土壤有机氮矿化过程[J]. 生态学报, 2008, 28(10): 4940-4950.
LI Z Y, LI S Q, LI S X. Organic N mineralization in typical soils of the Loess Plateau[J]. Acta Ecologica Sinica, 2008, 28(10): 4940-4950(in Chinese).
|
[34] |
FENG D F, BAO W K, PANG X Y. Consistent profile pattern and spatial variation of soil C/N/P stoichiometric ratios in the subalpine forests[J]. Journal of Soils and Sediments, 2017, 17(8): 2054-2065. doi: 10.1007/s11368-017-1665-9
|
[35] |
陶晓, 俞元春, 张云彬, 等. 城市森林土壤碳氮磷含量及其生态化学计量特征[J]. 生态环境学报, 2020, 29(1): 88-96.
TAO X, YU Y C, ZHANG Y B, et al. Carbon, nitrogen and phosphorus contents and their ecological stoichiometry in urban forest soil[J]. Ecology and Environmental Sciences, 2020, 29(1): 88-96(in Chinese).
|
[36] |
王国安. 中国北方草本植物及表土有机质碳同位素组成[D]. 北京: 中国科学院地质与地球物理研究所, 2001.
WANG G A. δ13C composition in herbaceous plants and surface soil organic matter in North China [D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2001 (in Chinese).
|
[37] |
O'LEARY M H. Carbon isotopes in photosynthesis[J]. BioScience, 1988, 38(5): 328-336. doi: 10.2307/1310735
|
[38] |
WANG Y H, YANG H, ZHANG J X, et al. Characterization of n-alkanes and their carbon isotopic composition in sediments from a small catchment of the Dianchi watershed[J]. Chemosphere, 2015, 119: 1346-1352. doi: 10.1016/j.chemosphere.2014.01.085
|
[39] |
刘卫国, 王政. 黄土高原现代植物-土壤氮同位素组成及对环境变化的响应[J]. 科学通报, 2008, 53(23): 2917-2924. doi: 10.1360/csb2008-53-23-2917
LIU W G, WANG Z. Nitrogen isotopic compsition of plant-soil in the Loess Plateau and its responding to environmental change [J]. Chinese Science Bulletin, 2008, 53(23): 2917-2924(in Chinese). doi: 10.1360/csb2008-53-23-2917
|
[40] |
全小龙, 段中华, 乔有明, 等. 不同高寒草甸土壤碳氮稳定同位素和密度的差异[J]. 草业学报, 2016, 25(12): 27-34.
QUAN X L, DUAN Z H, QIAO Y M, et al. Variations in soil carbon and nitrogen stable isotopes and density among different alpine meadows[J]. Acta Prataculturae Sinica, 2016, 25(12): 27-34(in Chinese).
|
[41] |
HEATON T H E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: A review[J]. Chemical Geology: Isotope Geoscience Section, 1986, 59: 87-102. doi: 10.1016/0168-9622(86)90059-X
|
[42] |
RUIZ-FERNÁNDEZ A C, HILLAIRE-MARCEL C, GHALEB B, et al. Recent sedimentary history of anthropogenic impacts on the Culiacan River Estuary, northwestern Mexico: geochemical evidence from organic matter and nutrients[J]. Environmental Pollution, 2002, 118(3): 365-377. doi: 10.1016/S0269-7491(01)00287-1
|
[43] |
CLEVELAND C C, LIPTZIN D. C: N: P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass? [J]. Biogeochemistry, 2007, 85(3): 235-252. doi: 10.1007/s10533-007-9132-0
|
[44] |
CHEN Q Q, SHEN C D, PENG S L, et al. Soil organic matter turnover in the subtropical mountainous region of South China[J]. Soil Science, 2002, 167(6): 401-415. doi: 10.1097/00010694-200206000-00005
|
[45] |
HÖGBERG P. Forests losing large quantities of nitrogen have elevated 15N: 14N ratios[J]. Oecologia, 1990, 84(2): 229-231. doi: 10.1007/BF00318276
|
[46] |
HU C C, LEI Y B, TAN Y H, et al. Plant nitrogen and phosphorus utilization under invasive pressure in a montane ecosystem of tropical China[J]. Journal of Ecology, 2019, 107(1): 372–386. doi: 10.1111/1365-2745.13008
|
[47] |
XU S Q, LIU X Y, SUN Z C, et al. Isotopic elucidation of microbial nitrogen transformations in forest soils[J]. Global Biogeochemical Cycles, 2022, 35(12): e2021GB007070.
|