[1] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. doi: 10.1126/sciadv.1700782
[2] SMITH M, LOVE D C, ROCHMAN C M, et al. Microplastics in seafood and the implications for human health[J]. Current Environmental Health Reports, 2018, 5(3): 375-386. doi: 10.1007/s40572-018-0206-z
[3] DONG M T, ZHANG Q Q, XING X L, et al. Raman spectra and surface changes of microplastics weathered under natural environments[J]. Science of the Total Environment, 2020, 739: 139990. doi: 10.1016/j.scitotenv.2020.139990
[4] LI J Y, LIU H H, CHEN J P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection[J]. Water Research, 2018, 137: 362-374. doi: 10.1016/j.watres.2017.12.056
[5] CHEN Y J, LI J N, WANG F H, et al. Adsorption of tetracyclines onto polyethylene microplastics: A combined study of experiment and molecular dynamics simulation[J]. Chemosphere, 2021, 265: 129133. doi: 10.1016/j.chemosphere.2020.129133
[6] 曾祥英, 王姝歆, 程军, 等. 微塑料加速老化及分离过程的实验研究[J]. 环境科学研究, 2022, 35(3): 818-827. doi: 10.13198/j.issn.1001-6929.2021.12.13 ZENG X Y, WANG S X, CHENG J, et al. Laboratory accelerated aging and separation process of microplastics[J]. Research of Environmental Sciences, 2022, 35(3): 818-827 (in Chinese). doi: 10.13198/j.issn.1001-6929.2021.12.13
[7] WARD C P, ARMSTRONG C J, WALSH A N, et al. Sunlight converts polystyrene to carbon dioxide and dissolved organic carbon[J]. Environmental Science & Technology Letters, 2019, 6(11): 669-674.
[8] SONG Y K, HONG S H, JANG M, et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type[J]. Environmental Science & Technology, 2017, 51(8): 4368-4376.
[9] WU X Y, CHEN X L, JIANG R F, et al. New insights into the photo-degraded polystyrene microplastic: Effect on the release of volatile organic compounds[J]. Journal of Hazardous Materials, 2022, 431: 128523. doi: 10.1016/j.jhazmat.2022.128523
[10] WANG T, MA Y N, JI R. Aging processes of polyethylene mulch films and preparation of microplastics with environmental characteristics[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(4): 736-740. doi: 10.1007/s00128-020-02975-x
[11] GAO L, FU D D, ZHAO J J, et al. Microplastics aged in various environmental media exhibited strong sorption to heavy metals in seawater[J]. Marine Pollution Bulletin, 2021, 169: 112480. doi: 10.1016/j.marpolbul.2021.112480
[12] WU X W, LIU P, SHI H H, et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater[J]. Water Research, 2021, 188: 116456. doi: 10.1016/j.watres.2020.116456
[13] LUO H W, ZHAO Y Y, LI Y, et al. Aging of microplastics affects their surface properties, thermal decomposition, additives leaching and interactions in simulated fluids[J]. Science of the Total Environment, 2020, 714: 136862. doi: 10.1016/j.scitotenv.2020.136862
[14] AHMED M B, RAHMAN M S, ALOM J, et al. Microplastic particles in the aquatic environment: A systematic review[J]. Science of the Total Environment, 2021, 775: 145793. doi: 10.1016/j.scitotenv.2021.145793
[15] CHEN R, QI M, ZHANG G H, et al. Comparative experiments on polymer degradation technique of produced water of polymer flooding oilfield[J]. IOP Conference Series: Earth and Environmental Science, 2018, 113: 012208. doi: 10.1088/1755-1315/113/1/012208
[16] TIAN L L, KOLVENBACH B, CORVINI N, et al. Mineralisation of 14C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment[J]. New Biotechnology, 2017, 38: 101-105. doi: 10.1016/j.nbt.2016.07.008
[17] LIU P, QIAN L, WANG H Y, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes[J]. Environmental Science & Technology, 2019, 53(7): 3579-3588.
[18] DU H, XIE Y Q, WANG J. Microplastic degradation methods and corresponding degradation mechanism: Research status and future perspectives[J]. Journal of Hazardous Materials, 2021, 418: 126377. doi: 10.1016/j.jhazmat.2021.126377
[19] ZHU K C, JIA H Z, SUN Y J, et al. Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species[J]. Water Research, 2020, 173: 115564. doi: 10.1016/j.watres.2020.115564
[20] SHANG J, CHAI M, ZHU Y F. Solid-phase photocatalytic degradation of polystyrene plastic with TiO2 as photocatalyst[J]. Journal of Solid State Chemistry, 2003, 174(1): 104-110. doi: 10.1016/S0022-4596(03)00183-X
[21] LUO H W, ZENG Y F, ZHAO Y Y, et al. Effects of advanced oxidation processes on leachates and properties of microplastics[J]. Journal of Hazardous Materials, 2021, 413: 125342. doi: 10.1016/j.jhazmat.2021.125342
[22] FARINELLI G, MINELLA M, PAZZI M, et al. Natural iron ligands promote a metal-based oxidation mechanism for the Fenton reaction in water environments[J]. Journal of Hazardous Materials, 2020, 393: 122413. doi: 10.1016/j.jhazmat.2020.122413
[23] LANG M F, YU X Q, LIU J H, et al. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics[J]. Science of the Total Environment, 2020, 722: 137762. doi: 10.1016/j.scitotenv.2020.137762
[24] TAGG A S, HARRISON J P, JU-NAM Y, et al. Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater[J]. Chemical Communications (Cambridge, England), 2016, 53(2): 372-375.
[25] MIAO F, LIU Y F, GAO M M, et al. Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode[J]. Journal of Hazardous Materials, 2020, 399: 123023. doi: 10.1016/j.jhazmat.2020.123023
[26] LIU P, LU K, LI J L, et al. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates[J]. Journal of Hazardous Materials, 2020, 384: 121193. doi: 10.1016/j.jhazmat.2019.121193
[27] PADERVAND M, LICHTFOUSE E, ROBERT D, et al. Removal of microplastics from the environment. A review[J]. Environmental Chemistry Letters, 2020, 18(3): 807-828. doi: 10.1007/s10311-020-00983-1
[28] NAUENDORF A, KRAUSE S, BIGALKE N K, et al. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments[J]. Marine Pollution Bulletin, 2016, 103(1/2): 168-178.
[29] CHEN H B, HUA X, YANG Y, et al. Chronic exposure to UV-aged microplastics induces neurotoxicity by affecting dopamine, glutamate, and serotonin neurotransmission in Caenorhabditis elegans[J]. Journal of Hazardous Materials, 2021, 419: 126482. doi: 10.1016/j.jhazmat.2021.126482
[30] NG E L, HUERTA LWANGA E, ELDRIDGE S M, et al. An overview of microplastic and nanoplastic pollution in agroecosystems[J]. Science of the Total Environment, 2018, 627: 1377-1388. doi: 10.1016/j.scitotenv.2018.01.341
[31] JABLOUNE R, KHALIL M, BEN MOUSSA I E, et al. Enzymatic degradation of p-nitrophenyl esters, polyethylene terephthalate, cutin, and suberin by Sub1, a suberinase encoded by the plant pathogen Streptomyces scabies[J]. Microbes and Environments, 2020, 35((1): ): 19086.
[32] HUERTA LWANGA E, THAPA B, YANG X M, et al. Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration[J]. Science of the Total Environment, 2018, 624: 753-757. doi: 10.1016/j.scitotenv.2017.12.144
[33] DENARO R, AULENTA F, CRISAFI F, et al. Marine hydrocarbon-degrading bacteria breakdown poly(ethylene terephthalate) (PET)[J]. Science of the Total Environment, 2020, 749: 141608. doi: 10.1016/j.scitotenv.2020.141608
[34] YOSHIDA S, HIRAGA K, TAKEHANA T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199. doi: 10.1126/science.aad6359
[35] AUTA H S, ABIOYE O P, ARANSIOLA S A, et al. Enhanced microbial degradation of PET and PS microplastics under natural conditions in mangrove environment[J]. Journal of Environmental Management, 2022, 304: 114273. doi: 10.1016/j.jenvman.2021.114273
[36] SKARIYACHAN S, TASKEEN N, KISHORE A P, et al. Novel consortia of Enterobacter and Pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene[J]. Journal of Environmental Management, 2021, 284: 112030. doi: 10.1016/j.jenvman.2021.112030
[37] ZHU K C, JIA H Z, JIANG W J, et al. The first observation of the formation of persistent aminoxyl radicals and reactive nitrogen species on photoirradiated nitrogen-containing microplastics[J]. Environmental Science & Technology, 2022, 56(2): 779-789.
[38] KHOSROVYAN A, KAHRU A. Evaluation of the potential toxicity of UV-weathered virgin polyamide microplastics to non-biting midge Chironomus riparius[J]. Environmental Pollution, 2021, 287: 117334. doi: 10.1016/j.envpol.2021.117334
[39] DING L, YU X Q, GUO X T, et al. The photodegradation processes and mechanisms of polyvinyl chloride and polyethylene terephthalate microplastic in aquatic environments: Important role of clay minerals[J]. Water Research, 2022, 208: 117879. doi: 10.1016/j.watres.2021.117879
[40] SHABBIR S, FAHEEM M, ALI N, et al. Periphytic biofilm: An innovative approach for biodegradation of microplastics[J]. Science of the Total Environment, 2020, 717: 137064. doi: 10.1016/j.scitotenv.2020.137064
[41] WANG H Y, LIU P, WANG M J, et al. Enhanced phototransformation of atorvastatin by polystyrene microplastics: Critical role of aging[J]. Journal of Hazardous Materials, 2021, 408: 124756. doi: 10.1016/j.jhazmat.2020.124756
[42] YU X Q, XU Y B, LANG M F, et al. New insights on metal ions accelerating the aging behavior of polystyrene microplastics: Effects of different excess reactive oxygen species[J]. Science of the Total Environment, 2022, 821: 153457. doi: 10.1016/j.scitotenv.2022.153457
[43] SORASAN C, EDO C, GONZÁLEZ-PLEITER M, et al. Ageing and fragmentation of marine microplastics[J]. Science of the Total Environment, 2022, 827: 154438. doi: 10.1016/j.scitotenv.2022.154438
[44] OUYANG Z Z, LI S X, ZHAO M Y, et al. The aging behavior of polyvinyl chloride microplastics promoted by UV-activated persulfate process[J]. Journal of Hazardous Materials, 2022, 424: 127461. doi: 10.1016/j.jhazmat.2021.127461
[45] ZHANG J Q, GAO D L, LI Q H, et al. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella[J]. Science of the Total Environment, 2020, 704: 135931. doi: 10.1016/j.scitotenv.2019.135931
[46] MIRANDA M N, SAMPAIO M J, TAVARES P B, et al. Aging assessment of microplastics (LDPE, PET and uPVC) under urban environment stressors[J]. Science of the Total Environment, 2021, 796: 148914. doi: 10.1016/j.scitotenv.2021.148914
[47] PAÇO A, DUARTE K, da COSTA J P, et al. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum[J]. Science of the Total Environment, 2017, 586: 10-15. doi: 10.1016/j.scitotenv.2017.02.017
[48] LUO H W, XIANG Y H, LI Y, et al. Photocatalytic aging process of Nano-TiO2 coated polypropylene microplastics: Combining atomic force microscopy and infrared spectroscopy (AFM-IR) for nanoscale chemical characterization[J]. Journal of Hazardous Materials, 2021, 404: 124159. doi: 10.1016/j.jhazmat.2020.124159
[49] UHEIDA A, MEJÍA H G, ABDEL-REHIM M, et al. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system[J]. Journal of Hazardous Materials, 2021, 406: 124299. doi: 10.1016/j.jhazmat.2020.124299
[50] RANA A K, THAKUR M K, SAINI A K, et al. Recent developments in microbial degradation of polypropylene: Integrated approaches towards a sustainable environment[J]. Science of the Total Environment, 2022, 826: 154056. doi: 10.1016/j.scitotenv.2022.154056
[51] LIU P, WU X W, PENG J B, et al. Critical effect of iron red pigment on photoaging behavior of polypropylene microplastics in artificial seawater[J]. Journal of Hazardous Materials, 2021, 404: 124209. doi: 10.1016/j.jhazmat.2020.124209
[52] LIU X M, SUN P P, QU G J, et al. Insight into the characteristics and sorption behaviors of aged polystyrene microplastics through three type of accelerated oxidation processes[J]. Journal of Hazardous Materials, 2021, 407: 124836. doi: 10.1016/j.jhazmat.2020.124836
[53] FAN X L, MA Z X, ZOU Y F, et al. Investigation on the adsorption and desorption behaviors of heavy metals by tire wear particles with or without UV ageing processes[J]. Environmental Research, 2021, 195: 110858. doi: 10.1016/j.envres.2021.110858
[54] WANG Q J, WANGJIN X X, ZHANG Y, et al. The toxicity of virgin and UV-aged PVC microplastics on the growth of freshwater algae Chlamydomonas reinhardtii[J]. Science of the Total Environment, 2020, 749: 141603. doi: 10.1016/j.scitotenv.2020.141603
[55] LIU B, JIANG Q X, QIU Z H, et al. Process analysis of microplastic degradation using activated PMS and Fenton reagents[J]. Chemosphere, 2022, 298: 134220. doi: 10.1016/j.chemosphere.2022.134220
[56] TURNER A, HOLMES L A. Adsorption of trace metals by microplastic pellets in fresh water[J]. Environmental Chemistry, 2015, 12(5): 600. doi: 10.1071/EN14143
[57] GALLOWAY T S, LEWIS C N. Marine microplastics spell big problems for future generations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2331-2333.
[58] DING L, MAO R F, MA S R, et al. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants[J]. Water Research, 2020, 174: 115634. doi: 10.1016/j.watres.2020.115634
[59] MO Q M, YANG X J, WANG J J, et al. Adsorption mechanism of two pesticides on polyethylene and polypropylene microplastics: DFT calculations and particle size effects[J]. Environmental Pollution, 2021, 291: 118120. doi: 10.1016/j.envpol.2021.118120
[60] FAN T Y, ZHAO J, CHEN Y X, et al. Coexistence and adsorption properties of heavy metals by polypropylene microplastics[J]. Adsorption Science & Technology, 2021(2): 1-12.
[61] WANG T, YU C C, CHU Q, et al. Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films[J]. Chemosphere, 2020, 244: 125491. doi: 10.1016/j.chemosphere.2019.125491
[62] LIANG S J, XU S X, WANG C, et al. Enhanced alteration of poly(vinyl chloride) microplastics by hydrated electrons derived from indole-3-acetic acid assisted by a common cationic surfactant[J]. Water Research, 2021, 191: 116797. doi: 10.1016/j.watres.2020.116797
[63] PRIYANKA M, SARAVANAKUMAR M P. New insights on aging mechanism of microplastics using PARAFAC analysis: Impact on 4-nitrophenol removal via Statistical Physics Interpretation[J]. Science of the Total Environment, 2022, 807: 150819. doi: 10.1016/j.scitotenv.2021.150819
[64] WANG Y, WANG X J, LI Y, et al. Effects of exposure of polyethylene microplastics to air, water and soil on their adsorption behaviors for copper and tetracycline[J]. Chemical Engineering Journal, 2021, 404: 126412. doi: 10.1016/j.cej.2020.126412
[65] WANG C, XIAN Z Y, JIN X, et al. Photo-aging of polyvinyl chloride microplastic in the presence of natural organic acids[J]. Water Research, 2020, 183: 116082. doi: 10.1016/j.watres.2020.116082
[66] WANG C, LIANG S J, BAI L H, et al. Structure-dependent surface catalytic degradation of cephalosporin antibiotics on the aged polyvinyl chloride microplastics[J]. Water Research, 2021, 206: 117732. doi: 10.1016/j.watres.2021.117732
[67] KONG F X, XU X, XUE Y G, et al. Investigation of the adsorption of sulfamethoxazole by degradable microplastics artificially aged by chemical oxidation[J]. Archives of Environmental Contamination and Toxicology, 2021, 81(1): 155-165. doi: 10.1007/s00244-021-00856-w
[68] FU D D, ZHANG Q J, FAN Z Q, et al. Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris[J]. Aquatic Toxicology, 2019, 216: 105319. doi: 10.1016/j.aquatox.2019.105319
[69] WANG Z Z, FU D D, GAO L, et al. Aged microplastics decrease the bioavailability of coexisting heavy metals to microalga Chlorella vulgaris[J]. Ecotoxicology and Environmental Safety, 2021, 217: 112199. doi: 10.1016/j.ecoenv.2021.112199
[70] ZHANG X L, XIA M L, SU X J, et al. Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis[J]. Journal of Hazardous Materials, 2021, 413: 125321. doi: 10.1016/j.jhazmat.2021.125321
[71] ZOU W, XIA M L, JIANG K, et al. Photo-oxidative degradation mitigated the developmental toxicity of polyamide microplastics to zebrafish larvae by modulating macrophage-triggered proinflammatory responses and apoptosis[J]. Environmental Science & Technology, 2020, 54(21): 13888-13898.
[72] WANG X, ZHENG H, ZHAO J, et al. Photodegradation elevated the toxicity of polystyrene microplastics to grouper ( Epinephelus moara) through disrupting hepatic lipid homeostasis[J]. Environmental Science & Technology, 2020, 54(10): 6202-6212.
[73] JIANG X F, CHEN H, LIAO Y C, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 2019, 250: 831-838. doi: 10.1016/j.envpol.2019.04.055
[74] CHEN H B, YANG Y, WANG C, et al. Reproductive toxicity of UV-photodegraded polystyrene microplastics induced by DNA damage-dependent cell apoptosis in Caenorhabditis elegans[J]. Science of the Total Environment, 2022, 811: 152350. doi: 10.1016/j.scitotenv.2021.152350
[75] SCHÜR C, WEIL C, BAUM M, et al. Incubation in wastewater reduces the multigenerational effects of microplastics in Daphnia magna[J]. Environmental Science & Technology, 2021, 55(4): 2491-2499.
[76] KALČÍKOVÁ G, SKALAR T, MAROLT G, et al. An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms[J]. Water Research, 2020, 175: 115644. doi: 10.1016/j.watres.2020.115644
[77] WANG Z S, DONG H, WANG Y, et al. Effects of microplastics and their adsorption of cadmium as vectors on the cladoceran Moina monogolica Daday: Implications for plastic-ingesting organisms[J]. Journal of Hazardous Materials, 2020, 400: 123239. doi: 10.1016/j.jhazmat.2020.123239
[78] GUIMARÃES A T B, CHARLIE-SILVA I, MALAFAIA G. Toxic effects of naturally-aged microplastics on zebrafish juveniles: A more realistic approach to plastic pollution in freshwater ecosystems[J]. Journal of Hazardous Materials, 2021, 407: 124833. doi: 10.1016/j.jhazmat.2020.124833
[79] MURALI K, KENESEI K, LI Y, et al. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells[J]. Nanoscale, 2015, 7(9): 4199-4210. doi: 10.1039/C4NR06849A
[80] HUANG Y J, DING J N, ZHANG G S, et al. Interactive effects of microplastics and selected pharmaceuticals on red tilapia: Role of microplastic aging[J]. Science of the Total Environment, 2021, 752: 142256. doi: 10.1016/j.scitotenv.2020.142256