[1] |
柳凤娟, 张国平, 罗绪强, 等. Fe(Ⅱ)浓度对硫酸盐还原菌去除水体中砷和锑的影响[J]. 环境化学, 2021, 40(10): 3171-3179. doi: 10.7524/j.issn.0254-6108.2020060401
LIU F J, ZHANG G P, LUO X Q, et al. Effect of different contents of Fe(Ⅱ) on removal of arsenic and antimony from water by sulfate reducing bacteria[J]. Environmental Chemistry, 2021, 40(10): 3171-3179(in Chinese). doi: 10.7524/j.issn.0254-6108.2020060401
|
[2] |
任杰, 刘晓文, 李杰, 等. 我国锑的暴露现状及其环境化学行为分析[J]. 环境化学, 2020, 39(12): 3436-3449. doi: 10.7524/j.issn.0254-6108.2019090701
REN J, LIU X W, LI J, et al. Analysis of exposure status quo and environmental chemical behaviors of antimony in China[J]. Environmental Chemistry, 2020, 39(12): 3436-3449(in Chinese). doi: 10.7524/j.issn.0254-6108.2019090701
|
[3] |
FANG Z Y, LI Z X, ZHANG X L, et al. Enhanced arsenite removal from silicate-containing water by using redox polymer-based Fe(III) oxides nanocomposite[J]. Water Research, 2021, 189: 116673. doi: 10.1016/j.watres.2020.116673
|
[4] |
YANG T, WU S S, LIU C P, et al. Efficient degradation of organoarsenic by UV/chlorine treatment: Kinetics, mechanism, enhanced arsenic removal, and cytotoxicity[J]. Environmental Science & Technology, 2021, 55(3): 2037-2047.
|
[5] |
ARGOS M, KALRA T, RATHOUZ P J, et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): A prospective cohort study[J]. The Lancet, 2010, 376(9737): 252-258. doi: 10.1016/S0140-6736(10)60481-3
|
[6] |
LI J Y, ZHENG B H, HE Y Z, et al. Antimony contamination, consequences and removal techniques: A review[J]. Ecotoxicology and Environmental Safety, 2018, 156: 125-134. doi: 10.1016/j.ecoenv.2018.03.024
|
[7] |
SMITH A H, LOPIPERO P A, BATES M N, et al. Public health. Arsenic epidemiology and drinking water standards[J]. Science, 2002, 296(5576): 2145-2146. doi: 10.1126/science.1072896
|
[8] |
KANG M, KAMEI T, MAGARA Y. Comparing polyaluminum chloride and ferric chloride for antimony removal[J]. Water Research, 2003, 37(17): 4171-4179. doi: 10.1016/S0043-1354(03)00351-8
|
[9] |
ZHANG X Y, XIE N Y, GOU Y, et al. Insights into adsorptive removal of antimony contaminants: Functional materials, evaluation and prospective[J]. Journal of Hazardous Materials, 2021, 418: 126345. doi: 10.1016/j.jhazmat.2021.126345
|
[10] |
SARKAR A, PAUL B. The global menace of arsenic and its conventional remediation - A critical review[J]. Chemosphere, 2016, 158: 37-49. doi: 10.1016/j.chemosphere.2016.05.043
|
[11] |
曾辉平, 于亚萍, 吕赛赛, 等. 基于铁锰泥的除砷颗粒吸附剂制备及其比较[J]. 环境科学, 2019, 40(11): 5002-5008.
ZENG H P, YU Y P, LÜ S S, et al. Preparation and comparison of arsenic removal granular adsorbent based on iron-manganese sludge[J]. Environmental Science, 2019, 40(11): 5002-5008(in Chinese).
|
[12] |
李聪, 钟溢健, 解庆林, 等. 不同吸附材料处理水中砷的效应分析[J]. 现代化工, 2018, 38(7): 21-25. doi: 10.16606/j.cnki.issn0253-4320.2018.07.005
LI C, ZHONG Y J, XIE Q L, et al. Effect analysis on arsenic removal from water by different adsorption materials[J]. Modern Chemical Industry, 2018, 38(7): 21-25(in Chinese). doi: 10.16606/j.cnki.issn0253-4320.2018.07.005
|
[13] |
许江城, 康得军, 杨天学, 等. 改性吸附材料处理水体中砷的研究进展[J]. 水处理技术, 2020, 46(10): 6-11.
XU J C, KANG D J, YANG T X, et al. Research progress in the treatment of arsenic in water by modified adsorbent[J]. Technology of Water Treatment, 2020, 46(10): 6-11(in Chinese).
|
[14] |
CHI Z Y, XIE X J, PI K F, et al. Mineralogical controls on arsenite adsorption onto soils: Batch experiments and model-based quantification[J]. Science of the Total Environment, 2021, 767: 144920. doi: 10.1016/j.scitotenv.2020.144920
|
[15] |
CUONG D V, WU P C, CHEN L I, et al. Active MnO2/biochar composite for efficient As(Ⅲ) removal: Insight into the mechanisms of redox transformation and adsorption[J]. Water Research, 2021, 188: 116495. doi: 10.1016/j.watres.2020.116495
|
[16] |
UNGUREANU G, SANTOS S, BOAVENTURA R, et al. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption[J]. Journal of Environmental Management, 2015, 151: 326-342.
|
[17] |
YU T C, WANG X H, LI C. Removal of antimony by FeCl3-modified granular-activated carbon in aqueous solution[J]. Journal of Environmental Engineering, 2014, 140(9): A4014001. doi: 10.1061/(ASCE)EE.1943-7870.0000736
|
[18] |
MATSUI Y, SHIRASAKI N, YAMAGUCHI T, et al. Characteristics and components of poly-aluminum chloride coagulants that enhance arsenate removal by coagulation: Detailed analysis of aluminum species[J]. Water Research, 2017, 118: 177-186. doi: 10.1016/j.watres.2017.04.037
|
[19] |
MOHAN D, PITTMAN C U Jr, Arsenic removal from water/wastewater using adsorbents—A critical review[J]. Journal of Hazardous Materials, 2007, 142(1/2): 1-53.
|
[20] |
GUAN X H, DU J S, MENG X G, et al. Application of titanium dioxide in arsenic removal from water: A review[J]. Journal of Hazardous Materials, 2012, 215/216: 1-16. doi: 10.1016/j.jhazmat.2012.02.069
|
[21] |
KANEL S R, MANNING B, CHARLET L, et al. Removal of arsenic(Ⅲ) from groundwater by nanoscale zero-valent iron[J]. Environmental Science & Technology, 2005, 39(5): 1291-1298.
|
[22] |
MISHRA P K, GAHLYAN P, KUMAR R, et al. Aero-gel based cerium doped iron oxide solid solution for ultrafast removal of arsenic[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10668-10678.
|
[23] |
SHARMA V K, ZBORIL R, VARMA R S. Ferrates: greener oxidants with multimodal action in water treatment technologies[J]. Accounts of Chemical Research, 2015, 48(2): 182-191. doi: 10.1021/ar5004219
|
[24] |
ZHANG T S, WANG J, ZHANG W T, et al. Amorphous Fe/Mn bimetal-organic frameworks: Outer and inner structural designs for efficient arsenic(Ⅲ) removal[J]. Journal of Materials Chemistry A, 2019, 7(6): 2845-2854. doi: 10.1039/C8TA10394A
|
[25] |
马文静, 阎莉, 张建锋. 二氧化钛对地下水中砷硅的吸附及再生回用[J]. 环境科学, 2018, 39(3): 1241-1247. doi: 10.13227/j.hjkx.201706112
MA W J, YAN L, ZHANG J F. Groundwater arsenic and silicate adsorption on TiO2 and the regeneration of TiO2[J]. Environmental Science, 2018, 39(3): 1241-1247(in Chinese). doi: 10.13227/j.hjkx.201706112
|
[26] |
ZHANG C, WU B D, PAN B C, et al. Deep removal of arsenite from water with no need for pre-oxidation or in-line oxidation[J]. Chemical Engineering Journal, 2020, 401: 126046. doi: 10.1016/j.cej.2020.126046
|
[27] |
NABI D, ASLAM I, QAZI I A. Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal[J]. Journal of Environmental Sciences, 2009, 21(3): 402-408. doi: 10.1016/S1001-0742(08)62283-4
|
[28] |
GUO X, WANG J L. A general kinetic model for adsorption: Theoretical analysis and modeling[J]. Journal of Molecular Liquids, 2019, 288: 111100. doi: 10.1016/j.molliq.2019.111100
|
[29] |
GRAN G. Determination of the equivalence point in potentiometric titrations. part Ⅱ[J]. The Analyst, 1952, 77(920): 661-671. doi: 10.1039/an9527700661
|
[30] |
ANTONELLI D M, YING J Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified Sol-gel method[J]. Angewandte Chemie International Edition in English, 1995, 34(18): 2014-2017. doi: 10.1002/anie.199520141
|
[31] |
SCHUBERT U. Chemical modification of titanium alkoxides for Sol–gel processing[J]. Journal of Materials Chemistry, 2005, 15(35/36): 3701.
|