[1] |
ANDRES J, BERTIN P N. The microbial genomics of arsenic[J]. FEMS Microbiology Reviews, 2016, 40(2): 299-322. doi: 10.1093/femsre/fuv050
|
[2] |
CROGNALE S, ZECCHIN S, AMALFITANO S, et al. Phylogenetic structure and metabolic properties of microbial communities in arsenic-rich waters of geothermal origin[J]. Frontiers in Microbiology, 2017, 8: 2468. doi: 10.3389/fmicb.2017.02468
|
[3] |
BISSEN M, FRIMMEL F H. Arsenic—a review. part Ⅰ: Occurrence, toxicity, speciation, mobility[J]. Acta Hydrochimica et Hydrobiologica, 2003, 31(1): 9-18. doi: 10.1002/aheh.200390025
|
[4] |
陈朋, 晏磊, 王雄, 等. 砷的生物转化与代谢机制研究进展[J]. 生命科学研究, 2013, 17(6): 554-560.
CHEN P, YAN L, WANG X, et al. Progresses on biotransformation and metabolic mechanism of arsenic[J]. Life Science Research, 2013, 17(6): 554-560(in Chinese).
|
[5] |
NAUJOKAS M F, ANDERSON B, AHSAN H, et al. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem[J]. Environmental Health Perspectives, 2013, 121(3): 295-302. doi: 10.1289/ehp.1205875
|
[6] |
SHARMA V K, SOHN M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation[J]. Environment International, 2009, 35(4): 743-759. doi: 10.1016/j.envint.2009.01.005
|
[7] |
NIEGEL C, MATYSIK F M. Analytical methods for the determination of arsenosugars—A review of recent trends and developments[J]. Analytica Chimica Acta, 2010, 657(2): 83-99. doi: 10.1016/j.aca.2009.10.041
|
[8] |
刘香丽, 汪倩, 宋超, 等. 不同砷形态在水产品中的毒理及转化研究进展[J]. 农学学报, 2019, 9(12): 33-38. doi: 10.11923/j.issn.2095-4050.cjas20190500026
LIU X L, WANG Q, SONG C, et al. Arsenic forms in aquatic products: Progress research on toxicology and transformation[J]. Journal of Agriculture, 2019, 9(12): 33-38(in Chinese). doi: 10.11923/j.issn.2095-4050.cjas20190500026
|
[9] |
於海燕. 铁对砷代谢及毒性效应影响的体外胃肠模拟研究[D]. 南京: 南京大学, 2016.
YU H Y. Arsenic metabolism and toxicity influenced by ferric iron in simulated gastrointestinal tract[D]. Nanjing: Nanjing University, 2016. (in Chinese).
|
[10] |
DOPP E, HARTMANN L M, von RECKLINGHAUSEN U, et al. Forced uptake of trivalent and pentavalent methylated and inorganic arsenic and its cyto-/ genotoxicity in fibroblasts and hepatoma cells[J]. Toxicological Sciences, 2005, 87(1): 46-56. doi: 10.1093/toxsci/kfi218
|
[11] |
BYEON E, KANG H M, YOON C, et al. Toxicity mechanisms of arsenic compounds in aquatic organisms[J]. Aquatic Toxicology, 2021, 237: 105901. doi: 10.1016/j.aquatox.2021.105901
|
[12] |
ESETLILI M T, ESETLILI B C, OZEN F, et al. Determination of the arsenic pollution due to geothermal sources in the agricultural lands of alangulluaydin region[J]. Journal of Environmental Protection and Ecology, 2014, 15(4): 1555-1563.
|
[13] |
BAE H S, KANG I G, LEE S G, et al. Arsenic exposure and seafood intake in Korean adults[J]. Human & Experimental Toxicology, 2017, 36(5): 451-460.
|
[14] |
NG J C, WANG J P, SHRAIM A. A global health problem caused by arsenic from natural sources[J]. Chemosphere, 2003, 52(9): 1353-1359. doi: 10.1016/S0045-6535(03)00470-3
|
[15] |
NIÑO S A, MORALES-MARTÍNEZ A, CHI-AHUMADA E, et al. Arsenic exposure contributes to the bioenergetic damage in an Alzheimer's disease model[J]. ACS Chemical Neuroscience, 2019, 10(1): 323-336. doi: 10.1021/acschemneuro.8b00278
|
[16] |
王琛绯, 石明, 王佳婷, 等. 食物慢性砷暴露对小鼠脑组织中砷形态的影响[J]. 现代食品科技, 2020, 36(7): 289-297.
WANG C F, SHI M, WANG J T, et al. Arsenic species analyses of mice brain under chronic arsenic exposure through food[J]. Modern Food Science and Technology, 2020, 36(7): 289-297(in Chinese).
|
[17] |
WANG C F, DENG H Y, WANG D B, et al. Changes in metabolomics and lipidomics in brain tissue and their correlations with the gut microbiome after chronic food-derived arsenic exposure in mice[J]. Ecotoxicology and Environmental Safety, 2021, 228: 112935. doi: 10.1016/j.ecoenv.2021.112935
|
[18] |
LIN C, PING M L, ZHANG X, et al. In vitro bio-accessibility and distribution characteristic of each arsenic species in different fishes and shellfishes/shrimps collected from Fujian of China[J]. Journal of Hazardous Materials, 2021, 420: 126660. doi: 10.1016/j.jhazmat.2021.126660
|
[19] |
CHEN L Z, ZHANG W, GUO Z Q, et al. Effects of acclimation on arsenic bioaccumulation and biotransformation in freshwater medaka Oryzias mekongensis after chronic arsenic exposure[J]. Environmental Pollution, 2018, 238: 17-25. doi: 10.1016/j.envpol.2018.03.011
|
[20] |
CUI D, ZHANG P, LI H P, et al. The dynamic effects of different inorganic arsenic species in crucian carp ( Carassius auratus) liver during chronic dietborne exposure: Bioaccumulation, biotransformation and oxidative stress[J]. Science of the Total Environment, 2020, 727: 138737. doi: 10.1016/j.scitotenv.2020.138737
|
[21] |
CUI D, ZHANG P, LI H P, et al. The dynamic changes of arsenic biotransformation and bioaccumulation in muscle of freshwater food fish crucian carp during chronic dietborne exposure[J]. Journal of Environmental Sciences, 2021, 100: 74-81. doi: 10.1016/j.jes.2020.07.005
|
[22] |
KIM J H, KANG J C. The arsenic accumulation and its effect on oxidative stress responses in juvenile rockfish, Sebastes schlegelii, exposed to waterborne arsenic (As3+)[J]. Environmental Toxicology and Pharmacology, 2015, 39(2): 668-676. doi: 10.1016/j.etap.2015.01.012
|
[23] |
KUMAR R, BANERJEE T K. Analysis of arsenic bioaccumulation in different organs of the nutritionally important catfish, Clarias batrachus (L. ) exposed to the trivalent arsenic salt, sodium arsenite[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 89(3): 445-449. doi: 10.1007/s00128-012-0714-8
|
[24] |
JUNCOS R, ARCAGNI M, SQUADRONE S, et al. Interspecific differences in the bioaccumulation of arsenic of three Patagonian top predator fish: Organ distribution and arsenic speciation[J]. Ecotoxicology and Environmental Safety, 2019, 168: 431-442. doi: 10.1016/j.ecoenv.2018.10.077
|
[25] |
JUMA H, BATTAH A, SALIM M, et al. Arsenic and cadmium levels in imported fresh and frozen fish in Jordan[J]. Bulletin of Environmental Contamination and Toxicology, 2002, 68(1): 132-137. doi: 10.1007/s00128-001-0229-1
|
[26] |
NAIR M, JAYALAKSHMY K V, BALACHANDRAN K K, et al. Bioaccumulation of toxic metals by fish in a semi-enclosed tropical ecosystem[J]. Environmental Forensics, 2006, 7(3): 197-206. doi: 10.1080/15275920600840438
|
[27] |
杜森, 张黎. 砷在海洋食物链中的生物放大潜力及发生机制探讨[J]. 生态毒理学报, 2019, 14(1): 54-66. doi: 10.7524/AJE.1673-5897.20181112002
DU S, ZHANG L. Biomagnification potential and the mechanisms of arsenic in marine food chains[J]. Asian Journal of Ecotoxicology, 2019, 14(1): 54-66(in Chinese). doi: 10.7524/AJE.1673-5897.20181112002
|
[28] |
宋梦萍, 杨常亮, 张璟, 等. 食物相暴露条件下尼罗罗非鱼对砷的累积与转化[J]. 环境化学, 2022, 41(6): 1897-1904.
SONG M P, YANG C L, ZHANG J, et al. Accumulation and transformation of arsenic in Oreochromis niloticus under food phase exposure[J]. Environmental Chemistry, 2022, 41(6): 1897-1904(in Chinese).
|
[29] |
HONG S, KHIM J S, PARK J, et al. Species- and tissue-specific bioaccumulation of arsenicals in various aquatic organisms from a highly industrialized area in the Pohang City, Korea[J]. Environmental Pollution, 2014, 192: 27-35. doi: 10.1016/j.envpol.2014.05.004
|
[30] |
ZHANG W, WANG W X, ZHANG L. Arsenic speciation and spatial and inter species differences of metal concentrations in mollusks and crustaceans from a South China Estuary[J]. Ecotoxicology, 2013, 22((4): ): 671-682. doi: 10.1007/s10646-013-1059-8
|
[31] |
DEVESA V, SÚÑER M A, LAI V W M, et al. Distribution of arsenic species in the freshwater crustacean Procambarus clarkii[J]. Applied Organometallic Chemistry, 2002, 16(12): 692-700. doi: 10.1002/aoc.374
|
[32] |
LIAO Z H, CHUANG H C, HUANG H T, et al. Bioaccumulation of arsenic and immunotoxic effect in white shrimp ( Penaeus vannamei) exposed to trivalent arsenic[J]. Fish & Shellfish Immunology, 2022, 122: 376-385.
|
[33] |
YAMAGUCHI S, CELINO F T, ITO A, et al. Effects of arsenic on gonadal development in freshwater crab, Somanniathelphusa pax, in Vietnam and Geothelphusa dehaani in Japan[J]. Ecotoxicology (London, England), 2008, 17(8): 772-780. doi: 10.1007/s10646-008-0228-7
|
[34] |
RADKE B, DEMBSKA G, PAZIKOWSKA-SAPOTA G, et al. Many faces of arsenic[J]. Oceanological and Hydrobiological Studies, 2019, 48(1): 90-104. doi: 10.1515/ohs-2019-0010
|
[35] |
JEON C, PARK J Y, YOO Y J. Characteristics of metal removal using carboxylated alginic acid[J]. Water Research, 2002, 36(7): 1814-1824. doi: 10.1016/S0043-1354(01)00389-X
|
[36] |
WOLFE-SIMON F, SWITZER BLUM J, KULP T R, et al. A bacterium that can grow by using arsenic instead of phosphorus[J]. Science, 2011, 332(6034): 1163-1166. doi: 10.1126/science.1197258
|
[37] |
LIN Y B, HUANG Z X, WU L, et al. Influence of phosphorus on the uptake and biotransformation of arsenic in Porphyra haitanensis at environmental relevant concentrations[J]. Science of the Total Environment, 2021, 800: 149534. doi: 10.1016/j.scitotenv.2021.149534
|
[38] |
ELIAS M, WELLNER A, GOLDIN-AZULAY K, et al. The molecular basis of phosphate discrimination in arsenate-rich environments[J]. Nature, 2012, 491(7422): 134-137. doi: 10.1038/nature11517
|
[39] |
BAHAR M M, MEGHARAJ M, NAIDU R. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp[J]. Environmental Science and Pollution Research International, 2016, 23(3): 2663-2668. doi: 10.1007/s11356-015-5510-7
|
[40] |
RODRIGUEZ CASTRO M C, URREA G, GUASCH H. Influence of the interaction between phosphate and arsenate on periphyton's growth and its nutrient uptake capacity[J]. Science of the Total Environment, 2015, 503/504: 122-132. doi: 10.1016/j.scitotenv.2014.06.094
|
[41] |
ZHANG S, DENG R, LIN D H, et al. Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae[J]. Nanotoxicology, 2017, 11(9/10): 1115-1126.
|
[42] |
LUO Z X, WANG Z H, YAN Y M, et al. Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species[J]. Environmental Pollution, 2018, 238: 631-637. doi: 10.1016/j.envpol.2018.03.070
|
[43] |
李海丽, 王丽, 古雪香, 等. 茂名市主要水产品中无机砷含量分析及其健康风险评价[J]. 食品工业, 2020, 41(10): 337-340.
LI H L, WANG L, GU X X, et al. Analysis of inorganic arsenic content and health risk assessment in main aquatic products in Maoming[J]. The Food Industry, 2020, 41(10): 337-340(in Chinese).
|
[44] |
JULSHAMN K, VALDERSNES S, DUINKER A, et al. Heavy metals and POPs in red king crab from the Barents Sea[J]. Food Chemistry, 2015, 167: 409-417. doi: 10.1016/j.foodchem.2014.07.003
|
[45] |
NHO E Y, KHAN N, CHOI J Y, et al. Determination of toxic metals in cephalopods from south Korea[J]. Analytical Letters, 2016, 49(10): 1578-1588. doi: 10.1080/00032719.2015.1107082
|
[46] |
樊伟, 王晶, 王若燕, 等. 绍兴市水产品中6种重金属调查[J]. 环境与健康杂志, 2017, 34(6): 536-538. doi: 10.16241/j.cnki.1001-5914.2017.06.017
FAN W, WANG J, WANG R Y, et al. Investigation of 6 heavy metals in aquatic products of Shaoxing City[J]. Journal of Environment and Health, 2017, 34(6): 536-538(in Chinese). doi: 10.16241/j.cnki.1001-5914.2017.06.017
|
[47] |
梅光明, 严国, 常家琪, 等. 浙江沿海海产品无机砷污染调查及食用风险分析[J]. 食品工业科技, 2019, 40(12): 218-223, 229.
MEI G M, YAN G, CHANG J Q, et al. Investigation on inorganic arsenic pollution of seafood in Zhejiang coast and potential dietary health risk assessment[J]. Science and Technology of Food Industry, 2019, 40(12): 218-223, 229(in Chinese).
|
[48] |
杨磊, 崔建超. 保定地区食品中有害元素污染状况调查[J]. 中国卫生检验杂志, 2017, 27(22): 3307-3309.
YANG L, CUI J C. Investigation on harmful elements contamination in food in Baoding[J]. Chinese Journal of Health Laboratory Technology, 2017, 27(22): 3307-3309(in Chinese).
|
[49] |
NĘDZAREK A, CZERNIEJEWSKI P, DROST A, et al. The distribution of elements in the body of invasive Chinese mitten crabs ( Eriocheir sinensis H. Milne-Edwards, 1853) from Lake Dąbie, Poland[J]. Journal of Food Composition and Analysis, 2017, 60: 1-9. doi: 10.1016/j.jfca.2017.03.003
|
[50] |
蔡华, 罗宝章, 熊丽蓓, 等. 上海市水产品中重金属污染情况[J]. 卫生研究, 2018, 47(5): 740-743.
CAI H, LUO B Z, XIONG L B, et al. Heavy metal pollution in aquatic products in Shanghai[J]. Journal of Hygiene Research, 2018, 47(5): 740-743(in Chinese).
|
[51] |
SHORNA S, SHAWKAT S, HOSSAIN A, et al. Accumulation of trace metals in indigenous fish species from the old Brahmaputra River in Bangladesh and human health risk implications[J]. Biological Trace Element Research, 2021, 199(9): 3478-3488. doi: 10.1007/s12011-020-02450-y
|
[52] |
SHALINI R, JEYASEKARAN G, SHAKILA R J, et al. Concentrations of trace elements in the organs of commercially exploited crustaceans and cephalopods caught in the waters of Thoothukudi, South India[J]. Marine Pollution Bulletin, 2020, 154: 111045. doi: 10.1016/j.marpolbul.2020.111045
|
[53] |
陈清德, 黄艳桃, 唐琼, 等. 2017—2020年广西市售水产品重金属污染评价及健康风险评估[J]. 职业与健康, 2021, 37(17): 2332-2335.
CHEN Q D, HUANG Y T, TANG Q, et al. Evaluation on heavy metals pollution and assessment on health risk of commercial aquatic products in Guangxi Province from 2017-2020[J]. Occupation and Health, 2021, 37(17): 2332-2335(in Chinese).
|
[54] |
陈丽辉. 中国与主要国际组织、发达国家水产品中重金属限量比对分析研究[J]. 渔业研究, 2020, 42(4): 394-403.
CHEN L H. Comparative analysis of the limited quantity of heavy metals in aquatic products of China with major international organizations and developed countries[J]. Journal of Fisheries Research, 2020, 42(4): 394-403(in Chinese).
|
[55] |
国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 食品中污染物限量: GB 2762—2017[S]. 北京: 中国标准出版社, 2017.
National Health and Family Planning Commission of the People's Republic of China, State Food and Drug Administration. National Food Safety Standard Limited of Contaminana in Food: GB 2762—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
|
[56] |
Indonesian Food and Drug Administration. G/SPS/N/IDN/142, Draft Regulation of Indonesian Food and Drug Authority of The Republic of Indonesia on Heavy Metals Contaminants Requirements in Processed Food[EB/OL]. Indonesia, 2022: 8-11 (2022-2-3), [2022-6-11].
|
[57] |
乔艺飘, 张龙飞, 顾润润, 等. 高效液相色谱-电感耦合等离子体质谱法测定水产品中砷形态的研究进展[J]. 环境化学, 2020, 39(4): 1084-1097. doi: 10.7524/j.issn.0254-6108.2019122003
QIAO Y P, ZHANG L F, GU R R, et al. Determination of arsenic species in aquatic products by high performance liquid chromatography inductively coupled plasma mass spectrometry: A review[J]. Environmental Chemistry, 2020, 39(4): 1084-1097(in Chinese). doi: 10.7524/j.issn.0254-6108.2019122003
|
[58] |
RAHMAN M A, HASSLER C. Is arsenic biotransformation a detoxification mechanism for microorganisms?[J]. Aquatic Toxicology, 2014, 146: 212-219. doi: 10.1016/j.aquatox.2013.11.009
|
[59] |
JAISHANKAR M, TSETEN T, ANBALAGAN N, et al. Toxicity, mechanism and health effects of some heavy metals[J]. Interdisciplinary Toxicology, 2014, 7(2): 60-72. doi: 10.2478/intox-2014-0009
|
[60] |
SINGH N, KUMAR D, SAHU A P. Arsenic in the environment: Effects on human health and possible prevention[J]. Journal of Environmental Biology, 2007, 28(2 Suppl): 359-365.
|
[61] |
ZHANG W, GUO Z Q, ZHOU Y Y, et al. Biotransformation and detoxification of inorganic arsenic in Bombay oyster Saccostrea cucullata[J]. Aquatic Toxicology, 2015, 158: 33-40. doi: 10.1016/j.aquatox.2014.10.021
|
[62] |
ZHANG W, MIAO A J, WANG N X, et al. Arsenic bioaccumulation and biotransformation in aquatic organisms[J]. Environment International, 2022, 163: 107221. doi: 10.1016/j.envint.2022.107221
|
[63] |
MEHMOOD M A, QADRI H, BHAT R A, et al. Heavy metal contamination in two commercial fish species of a trans-Himalayan freshwater ecosystem[J]. Environmental Monitoring and Assessment, 2019, 191(2): 104. doi: 10.1007/s10661-019-7245-2
|
[64] |
RAHMAN M A, HOGAN B, DUNCAN E, et al. Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton ( Chlorella sp. CE-35)[J]. Ecotoxicology and Environmental Safety, 2014, 106: 126-135. doi: 10.1016/j.ecoenv.2014.03.004
|
[65] |
HE Q, QU R J, WANG X H, et al. Toxicity of arsenic to Photobacterium phosphoreum, Daphnia magna, and Danio rerio at different pH levels[J]. CLEAN - Soil, Air, Water, 2016, 44(1): 72-77. doi: 10.1002/clen.201400124
|
[66] |
ROSEN B P. Biochemistry of arsenic detoxification[J]. FEBS Letters, 2002, 529(1): 86-92. doi: 10.1016/S0014-5793(02)03186-1
|
[67] |
王旭, 董燕, 耿安静, 等. 4种形态砷在大鼠体内的药物动力学及亚急性毒性比较研究[J]. 中国食品卫生杂志, 2017, 29(4): 400-406.
WANG X, DONG Y, GENG A J, et al. Comparison of pharmacokinetics and subacute toxicity for four arsenic species in rats[J]. Chinese Journal of Food Hygiene, 2017, 29(4): 400-406(in Chinese).
|
[68] |
赵梦醒, 刘淇, 曹荣, 等. 海带中砷在大鼠体内代谢过程中的形态变化[J]. 中国海洋大学学报(自然科学版), 2014, 44(8): 54-60.
ZHAO M X, LIU Q, CAO R, et al. Changes of species of arsenic in kelp during metabolism in rats[J]. Periodical of Ocean University of China, 2014, 44(8): 54-60(in Chinese).
|
[69] |
于霄云, 钟媛, 牛玉红, 等. 谷胱甘肽与亚硒酸钠对饮水砷暴露小鼠体内砷代谢的影响[J]. 中华预防医学杂志, 2008, 42(9): 636-639.
YU X Y, ZHONG Y, NIU Y H, et al. Effect of glutathione and sodium selenite on the metabolism of arsenic in mice exposed to arsenic through drinking water[J]. Chinese Journal of Preventive Medicine, 2008, 42(9): 636-639 (in Chinese).
|
[70] |
代华, 夏茵茵, Ting-Li Han, 等. 慢性砷暴露对小鼠脑和血清代谢组学的影响[J]. 南方医科大学学报, 2016, 36(9): 1192-1197.
DAI H, XIA Y Y, TING-LI H, et al. Effect of chronic arsenic exposure on mouse brain tissue and serum metabolomics[J]. Journal of Southern Medical University, 2016, 36(9): 1192-1197(in Chinese).
|
[71] |
HE Z X, XU Y D, MA Q L, et al. SOX2 modulated astrocytic process plasticity is involved in arsenic-induced metabolic disorders[J]. Journal of Hazardous Materials, 2022, 435: 128942. doi: 10.1016/j.jhazmat.2022.128942
|
[72] |
ZHONG G L, WAN F, WU S F, et al. Arsenic or/and antimony induced mitophagy and apoptosis associated with metabolic abnormalities and oxidative stress in the liver of mice[J]. Science of the Total Environment, 2021, 777: 146082. doi: 10.1016/j.scitotenv.2021.146082
|
[73] |
王艳艳, 姜红梅, 安玉, 等. 三氧化二砷对小鼠大脑组织神经递质代谢酶基因及其受体基因表达谱的影响[J]. 环境与职业医学, 2012, 29(11): 671-673.
WANG Y Y, JIANG H M, AN Y, et al. Influence of arsenic trioxide on gene expression profiles of metabolic enzymes and receptors for neurotransmitters in Cerebrum of mice[J]. Journal of Environmental & Occupational Medicine, 2012, 29(11): 671-673(in Chinese).
|
[74] |
王健龄, 苏伟, 凌志, 等. 慢性饮水砷暴露小鼠无机砷代谢产物的蓄积与分布[J]. 环境与健康杂志, 2019, 36(10): 912-917.
WANG J L, SU W, LING Z, et al. Accumulation and distributions of inorganic arsenic metabolites in tissue of mice chronically exposed to arsenic in drinking water[J]. Journal of Environment and Health, 2019, 36(10): 912-917(in Chinese).
|
[75] |
杨慧, 戴守辉, 王富华, 等. 海产品中的砷形态及其毒理代谢研究[J]. 农产品质量与安全, 2017(1): 21-26, 32.
YANG H, DAI S H, WANG F H, et al. Overview on arsenic speciation, its metabolism and toxicity in seafood[J]. Quality and Safety of Agro-Products, 2017(1): 21-26, 32(in Chinese).
|
[76] |
KENYON E M, HUGHES M F. A concise review of the toxicity and carcinogenicity of dimethylarsinic acid[J]. Toxicology, 2001, 160(1/2/3): 227-236.
|
[77] |
汤施展, 陈中祥, 黄晓丽, 等. 水产品中砷形态分析研究进展[J]. 水产学杂志, 2019, 32(2): 55-60. doi: 10.3969/j.issn.1005-3832.2019.02.009
TANG S Z, CHEN Z X, HUANG X L, et al. Progress in analysis of arsenic speciation in fishery products[J]. Chinese Journal of Fisheries, 2019, 32(2): 55-60(in Chinese). doi: 10.3969/j.issn.1005-3832.2019.02.009
|
[78] |
李晗君, 林婧, 李玉锋, 等. 亚慢性砷暴露小鼠体内不同形态砷的分布及对DNA的损伤作用[J]. 卫生研究, 2013, 42(5): 764-769, 776. doi: 10.19813/j.cnki.weishengyanjiu.2013.05.010
LI H J, LIN J, LI Y F, et al. Distribution of arsenic species and its DNA damage in subchronic arsenite-exposed mice[J]. Journal of Hygiene Research, 2013, 42(5): 764-769, 776(in Chinese). doi: 10.19813/j.cnki.weishengyanjiu.2013.05.010
|
[79] |
FABINYI M, LIU N, SONG Q Y, et al. Aquatic product consumption patterns and perceptions among the Chinese middle class[J]. Regional Studies in Marine Science, 2016, 7: 1-9. doi: 10.1016/j.rsma.2016.01.013
|
[80] |
TSENG C H. A review on environmental factors regulating arsenic methylation in humans[J]. Toxicology and Applied Pharmacology, 2009, 235(3): 338-350. doi: 10.1016/j.taap.2008.12.016
|
[81] |
THOMAS D J, STYBLO M, LIN S. The cellular metabolism and systemic toxicity of arsenic[J]. Toxicology and Applied Pharmacology, 2001, 176(2): 127-144. doi: 10.1006/taap.2001.9258
|
[82] |
SCHLÄWICKE ENGSTRÖM K, BROBERG K, CONCHA G, et al. Genetic polymorphisms influencing arsenic metabolism: Evidence from Argentina[J]. Environmental Health Perspectives, 2007, 115(4): 599-605. doi: 10.1289/ehp.9734
|
[83] |
MOLIN M, ULVEN S M, MELTZER H M, et al. Arsenic in the human food chain, biotransformation and toxicology - Review focusing on seafood arsenic[J]. Journal of Trace Elements in Medicine and Biology, 2015, 31: 249-259. doi: 10.1016/j.jtemb.2015.01.010
|
[84] |
袁雪花, 苏玉红. 奎屯高砷地下水灌溉区居民头发和指甲中砷含量研究[J]. 安全与环境学报, 2017, 17(4): 1519-1523.
YUAN X H, SU Y H. On the arsenic content rate in the hair and nail of the residents due to the high arsenic groundwater pollution in Kuitun irrigated area, Xinjiang[J]. Journal of Safety and Environment, 2017, 17(4): 1519-1523(in Chinese).
|
[85] |
ORLOFF K, MISTRY K, METCALF S. Biomonitoring for environmental exposures to arsenic[J]. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 2009, 12(7): 509-524. doi: 10.1080/10937400903358934
|
[86] |
李昕, 徐苑苑, 李冰, 等. 砷暴露母子砷代谢特点及DNA损伤差异[J]. 中国公共卫生, 2006, 22(9): 1099-1100. doi: 10.3321/j.issn:1001-0580.2006.09.042
LI X, XU Y Y, LI B, et al. Study on characteristics of arsenic metabolism and DNA damage between mother and child under arsenic exposure[J]. Chinese Journal of Public Health, 2006, 22(9): 1099-1100(in Chinese). doi: 10.3321/j.issn:1001-0580.2006.09.042
|
[87] |
TSENG C H, HUANG Y K, HUANG Y L, et al. Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in Blackfoot disease-hyperendemic villages in Taiwan[J]. Toxicology and Applied Pharmacology, 2005, 206(3): 299-308. doi: 10.1016/j.taap.2004.11.022
|
[88] |
WANG X X, MU X L, ZHANG J, et al. Serum metabolomics reveals that arsenic exposure disrupted lipid and amino acid metabolism in rats: A step forward in understanding chronic arsenic toxicity[J]. Metallomics, 2015, 7(3): 544-552. doi: 10.1039/C5MT00002E
|
[89] |
WU G Y, FANG Y Z, YANG S, et al. Glutathione metabolism and its implications for health[J]. The Journal of Nutrition, 2004, 134(3): 489-492. doi: 10.1093/jn/134.3.489
|
[90] |
FLORA S J S. Arsenic-induced oxidative stress and its reversibility[J]. Free Radical Biology and Medicine, 2011, 51(2): 257-281. doi: 10.1016/j.freeradbiomed.2011.04.008
|
[91] |
SHI H L, SHI X L, LIU K J. Oxidative mechanism of arsenic toxicity and carcinogenesis[J]. Molecular and Cellular Biochemistry, 2004, 255(1/2): 67-78. doi: 10.1023/B:MCBI.0000007262.26044.e8
|
[92] |
杜航, 龚进, 代华, 等. 慢性砷中毒患者头发代谢物特征的代谢组学研究[J]. 环境与职业医学, 2018, 35(2): 163-167.
DU H, GONG J, DAI H, et al. Metabonomics study on metabolic profile of hair samples from chronic arsenic poisoning patients[J]. Journal of Environmental & Occupational Medicine, 2018, 35(2): 163-167(in Chinese).
|
[93] |
MEZA M, GANDOLFI A J, KLIMECKI W T. Developmental and genetic modulation of arsenic biotransformation: A gene by environment interaction?[J]. Toxicology and Applied Pharmacology, 2007, 222(3): 381-387. doi: 10.1016/j.taap.2006.12.018
|
[94] |
VAHTER M, AKESSON A, LIDÉN C, et al. Gender differences in the disposition and toxicity of metals[J]. Environmental Research, 2007, 104(1): 85-95. doi: 10.1016/j.envres.2006.08.003
|
[95] |
HUANG Y K, TSENG C H, HUANG Y L, et al. Arsenic methylation capability and hypertension risk in subjects living in arseniasis-hyperendemic areas in southwestern Taiwan[J]. Toxicology and Applied Pharmacology, 2007, 218(2): 135-142. doi: 10.1016/j.taap.2006.10.022
|
[96] |
WANG Y, WANG S, XU P P, et al. Review of arsenic speciation, toxicity and metabolism in microalgae[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(3): 427-451. doi: 10.1007/s11157-015-9371-9
|
[97] |
WANG H T, LIANG Z Z, DING J, et al. Arsenic bioaccumulation in the soil fauna alters its gut microbiome and microbial arsenic biotransformation capacity[J]. Journal of Hazardous Materials, 2021, 417: 126018. doi: 10.1016/j.jhazmat.2021.126018
|
[98] |
ZHANG S Y, RENSING C, ZHU Y G. Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments[J]. Environmental Science & Technology, 2014, 48(2): 994-1000.
|
[99] |
WANG Z H, LUO Z X, YAN C Z. Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa[J]. Environmental Science and Pollution Research International, 2013, 20(10): 7286-7295. doi: 10.1007/s11356-013-1741-7
|
[100] |
INSKEEP W P, MACUR R E, HAMAMURA N, et al. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes[J]. Environmental Microbiology, 2007, 9(4): 934-943. doi: 10.1111/j.1462-2920.2006.01215.x
|
[101] |
ROSEN B P, LIU Z J. Transport pathways for arsenic and selenium: A minireview[J]. Environment International, 2009, 35(3): 512-515. doi: 10.1016/j.envint.2008.07.023
|
[102] |
CLEISS-ARNOLD J, KOECHLER S, PROUX C, et al. Temporal transcriptomic response during arsenic stress in Herminiimonas arsenicoxydans[J]. BMC Genomics, 2010, 11: 709. doi: 10.1186/1471-2164-11-709
|
[103] |
OREMLAND R S, STOLZ J F. The ecology of arsenic[J]. Science, 2003, 300(5621): 939-944. doi: 10.1126/science.1081903
|
[104] |
HUANG J H. Impact of microorganisms on arsenic biogeochemistry: A review[J]. Water, Air, & Soil Pollution, 2014, 225(2): 1-25.
|
[105] |
SILVER S, PHUNG L T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic[J]. Applied and Environmental Microbiology, 2005, 71(2): 599-608. doi: 10.1128/AEM.71.2.599-608.2005
|