[1] |
石岩, 郑凯凯, 邹吕熙, 等. 城镇污水处理厂总氮超标逻辑分析方法及应用[J]. 环境工程学报, 2020, 14(5): 1412-1420. doi: 10.12030/j.cjee.201811049
SHI Y, ZHENG K K, ZOU L, et al. Logic analysis method and application of total nitrogen exceeding the standard in urban sewage treatment plant[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1412-1420(in Chinese). doi: 10.12030/j.cjee.201811049
|
[2] |
ZHENG R, LI C H, HUANG K L, et al. In situ synthesis of N-doped TiO2 on Ti3C2 MXene with enhanced photocatalytic activity in the selective reduction of nitrate to N2[J]. Inorganic Chemistry Frontiers, 2022, 9(6): 1195-1207. doi: 10.1039/D1QI01614H
|
[3] |
YANG X, QI X, MA G Q, et al. Novel Z-Scheme Ag/TiO2/AgMIL-101(Cr) as an efficient photocatalyst for nitrogen production from nitrate[J]. Applied Surface Science, 2019, 479: 1048-1056. doi: 10.1016/j.apsusc.2019.02.111
|
[4] |
李炳荣, 曹特特, 王林, 等. 低氧条件下A2/O工艺对城市污水脱氮处理的中试研究[J]. 中国环境科学, 2019, 39(1): 134-140. doi: 10.3969/j.issn.1000-6923.2019.01.014
LI B R, CAO T T, WANG L, et al. A pilot-scale study on nitrogen removal of municipal wastewater by A2/O process under low dissolved oxygen condition[J]. China Environmental Science, 2019, 39(1): 134-140 (in Chinese). doi: 10.3969/j.issn.1000-6923.2019.01.014
|
[5] |
YANG H, HU S, ZHAO H, et al. High-performance Fe-doped ZIF-8 adsorbent for capturing tetracycline from aqueous solution[J]. Journal of Hazardous Materials, 2021, 416: 126046. doi: 10.1016/j.jhazmat.2021.126046
|
[6] |
陈紫盈, 孙洁, 罗雪文, 等. BiVO4晶面生长调控及其光催化氧化罗丹明 B 和还原 Cr(Ⅵ)的性能[J]. 环境化学, 2020, 39(8): 2129-2136. doi: 10.7524/j.issn.0254-6108.2019061101
CHEN Z Y, SUN J, LUO X W, et al. Growth regulation of BiVO4 crystal plane and photocatalytic oxidation of Rhodamine B and reduction of Cr(Ⅵ) [J]. Environmental Chemistry, 2020, 39(8): 2129-2136(in Chinese). doi: 10.7524/j.issn.0254-6108.2019061101
|
[7] |
郭桂全, 胡巧红, 王承林, 等. g-C3N4 /RGO的制备、光催化降解性能及其降解机理[J]. 环境化学, 2021, 40(3): 808-817. doi: 10.7524/j.issn.0254-6108.2019092605
GUO G Q, HU Q H, WANG C L, et al. Preparation, photocatalytic degradation performance and degradation mechanism of g-C3N4 /RGO[J]. Environmental Chemistry, 2021, 40(3): 808-817(in Chinese). doi: 10.7524/j.issn.0254-6108.2019092605
|
[8] |
ZHANG Y, PAN D L, TAO Y, et al. Photoelectrocatalytic reduction of CO2 to syngas via SnOx-enhanced Cu2O nanowires photocathodes[J]. Advanced Functional Materials, 2022, 32(8): 2109600. doi: 10.1002/adfm.202109600
|
[9] |
YANG Q, BAO X, LI Z Y, et al. Visible-light-enhanced Cr (VI) reduction and bioelectricity generation at MXene photocathode in photoelectrocatalytic microbial fuel cells[J]. Journal of Water Process Engineering, 2022, 45: 102454. doi: 10.1016/j.jwpe.2021.102454
|
[10] |
ROY S. Photocatalytic materials for reduction of nitroarenes and nitrates[J]. The Journal of Physical Chemistry C, 2020, 124(52): 28345-28358. doi: 10.1021/acs.jpcc.0c07363
|
[11] |
JIANG C S, ZHANG M Y, DONG G J, et al. Photocatalytic nitrate reduction by a non-metal catalyst h-BN: Performance and mechanism[J]. Chemical Engineering Journal, 2022, 429: 132216. doi: 10.1016/j.cej.2021.132216
|
[12] |
SHI H L, LI C H, WANG L, et al. Selective reduction of nitrate into N2 by novel Z-scheme NH2-MIL-101(Fe)/BiVO4 heterojunction with enhanced photocatalytic activity[J]. Journal of Hazardous Materials, 2022, 424(Pt D): 127711.
|
[13] |
曹跃辉, 郭珊, 肖毓达, 等. Ag/BiOBr 材料的制备及其光催化还原硝酸盐氮[J]. 环境化学, 2023, 42(10): 3523-3533. doi: 10.7524/j.issn.0254-6108.2022043001
CAO Y H, GUO S, XIAO Y D, et al. Preparation of Ag/BiOBr and photocatalytic reduction of nitrate[J]. Environmental Chemistry, 2023, 42 (10): 3523-3533(in Chinese). doi: 10.7524/j.issn.0254-6108.2022043001
|
[14] |
SOARES O S G P, PEREIRA M F R, ÓRFÃO J J M, et al. Photocatalytic nitrate reduction over Pd-Cu/TiO2[J]. Chemical Engineering Journal, 2014, 251: 123-130. doi: 10.1016/j.cej.2014.04.030
|
[15] |
ZHENG R, LI C H, HUANG K L, et al. TiO2/Ti3C2 intercalated with g-C3N4 nanosheets as 3D/2D ternary heterojunctions photocatalyst for the enhanced photocatalytic reduction of nitrate with high N2 selectivity in aqueous solution[J]. Inorganic Chemistry Frontiers, 2021, 8(10): 2518-2531. doi: 10.1039/D1QI00001B
|
[16] |
LI X, ZHANG M Y, FENG J, et al. Electrostatic self-assembly to form unique LiNbO3/ZnS core-shell structure for photocatalytic nitrate reduction enhancement[J]. Journal of Colloid and Interface Science, 2022, 607: 1323-1332. doi: 10.1016/j.jcis.2021.09.069
|
[17] |
LI X, WANG S, AN H Z, et al. Enhanced photocatalytic reduction of nitrate enabled by Fe-doped LiNbO3 materials in water: Performance and mechanism[J]. Applied Surface Science, 2021, 539: 148257. doi: 10.1016/j.apsusc.2020.148257
|
[18] |
HOU Z A, CHU J F, LIU C, et al. High efficient photocatalytic reduction of nitrate to N2 by Core-shell Ag/SiO2@cTiO2 with synergistic effect of light scattering and surface plasmon resonance[J]. Chemical Engineering Journal, 2021, 415: 128863. doi: 10.1016/j.cej.2021.128863
|
[19] |
SHAO S, ZHANG J, LI L K, et al. Visible-light-driven photocatalytic N2 fixation to nitrates by 2D/2D ultrathin BiVO4 nanosheet/rGO nanocomposites[J]. Chemical Communications, 2022, 58(13): 2184-2187. doi: 10.1039/D1CC06750H
|
[20] |
PATNAIK S, SAHOO D P, PARIDA K. Recent advances in anion doped g-C3N4 photocatalysts: A review[J]. Carbon, 2021, 172: 682-711. doi: 10.1016/j.carbon.2020.10.073
|
[21] |
ISMAEL M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis[J]. Journal of Alloys and Compounds, 2020, 846: 156446. doi: 10.1016/j.jallcom.2020.156446
|
[22] |
ZHANG C, LI Y, SHUAI D M, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review[J]. Chemosphere, 2019, 214: 462-479. doi: 10.1016/j.chemosphere.2018.09.137
|
[23] |
WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. doi: 10.1038/nmat2317
|
[24] |
QIN J Y, HUO J P, ZHANG P Y, et al. Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation[J]. Nanoscale, 2016, 8(4): 2249-2259. doi: 10.1039/C5NR06346A
|
[25] |
TANG L, FENG C Y, DENG Y C, et al. Enhanced photocatalytic activity of ternary Ag/g-C3N4/NaTaO3 photocatalysts under wide spectrum light radiation: The high potential band protection mechanism[J]. Applied Catalysis B: Environmental, 2018, 230: 102-114. doi: 10.1016/j.apcatb.2018.02.031
|
[26] |
GE L, HAN C C, LIU J, et al. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles[J]. Applied Catalysis A: General, 2011, 409/410: 215-222. doi: 10.1016/j.apcata.2011.10.006
|
[27] |
BAI X J, ZONG R L, LI C X, et al. Enhancement of visible photocatalytic activity via Ag@C3N4 core-shell plasmonic composite[J]. Applied Catalysis B: Environmental, 2014, 147: 82-91. doi: 10.1016/j.apcatb.2013.08.007
|
[28] |
LI Z J, WANG J H, ZHU K X, et al. Ag/g-C3N4 composite nanosheets: synthesis and enhanced visible photocatalytic activities[J]. Materials Letters, 2015, 145: 167-170. doi: 10.1016/j.matlet.2015.01.058
|
[29] |
MENG Y L, SHEN J, CHEN D, et al. Photodegradation performance of methylene blue aqueous solution on Ag/g-C3N4 catalyst[J]. Rare Metals, 2011, 30(1): 276-279.
|
[30] |
VARAPRAGASAM S J P, ANDRIOLO J M, SKINNER J L, et al. Photocatalytic reduction of aqueous nitrate with hybrid Ag/g-C3N4 under ultraviolet and visible light[J]. ACS Omega, 2021, 6(50): 34850-34856. doi: 10.1021/acsomega.1c05523
|
[31] |
GROENEWOLT M, ANTONIETTI M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices[J]. Advanced Materials, 2005, 17(14): 1789-1792. doi: 10.1002/adma.200401756
|
[32] |
SUN Y J, XIONG T, NI Z L, et al. Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration[J]. Applied Surface Science, 2015, 358: 356-362. doi: 10.1016/j.apsusc.2015.07.071
|
[33] |
ZHOU C Y, LAI C, HUANG D L, et al. Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven[J]. Applied Catalysis B: Environmental, 2018, 220: 202-210. doi: 10.1016/j.apcatb.2017.08.055
|
[34] |
XIN G, MENG Y L. Pyrolysis synthesized g-C3N4 for photocatalytic degradation of methylene blue[J]. Journal of Chemistry, 2013, 2013: 1-5.
|
[35] |
KHARLAMOV A, BONDARENKO M, KHARLAMOVA G, et al. Features of the synthesis of carbon nitride oxide(g-C3N4)O at urea pyrolysis[J]. Diamond and Related Materials, 2016, 66: 16-22. doi: 10.1016/j.diamond.2016.03.012
|
[36] |
DAI H Z, GAO X C, LIU E Z, et al. Synthesis and characterization of graphitic carbon nitride sub-microspheres using microwave method under mild condition[J]. Diamond and Related Materials, 2013, 38: 109-117. doi: 10.1016/j.diamond.2013.06.012
|
[37] |
FU Y S, HUANG L L T, ZHANG L L, et al. Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach[J]. Nanoscale, 2015, 7(32): 13723-13733. doi: 10.1039/C5NR03260A
|
[38] |
NAGAJYOTHI P C, PANDURANGAN M, VATTIKUTI S V P, et al. Enhanced photocatalytic activity of Ag/g-C3N4 composite[J]. Separation and Purification Technology, 2017, 188: 228-237. doi: 10.1016/j.seppur.2017.07.026
|
[39] |
WANG P, HUANG B B, QIN X Y, et al. Ag@AgCl: a highly efficient and stable photocatalyst active under visible light[J]. Angewandte Chemie, 2008, 47(41) : 7931-7933. doi: 10.1002/anie.200802483
|
[40] |
FU Y H, LIANG W, GUO J Q, et al. MoS2 quantum dots decorated g-C3N4/Ag heterostructures for enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2018, 430: 234-242. doi: 10.1016/j.apsusc.2017.08.042
|
[41] |
ZHANG D F, WANG B Q, GONG X B, et al. Selective reduction of nitrate to nitrogen gas by novel Cu2O-Cu0@Fe0 composite combined with HCOOH under UV radiation[J]. Chemical Engineering Journal, 2019, 359: 1195-1204. doi: 10.1016/j.cej.2018.11.058
|