[1] |
JARIMI H, POWELL R, RIFFAT S. Review of sustainable methods for atmospheric water harvesting [J]. International Journal of Low-Carbon Technologies, 2020, 15(2): 253-276. doi: 10.1093/ijlct/ctz072
|
[2] |
KLEMM O, SCHEMENAUER R S, LUMMERICH A, et al. Fog as a fresh-water resource: overview and perspectives [J]. Ambio, 2012, 41(3): 221-234. doi: 10.1007/s13280-012-0247-8
|
[3] |
KHALIL B, ADAMOWSKI J, SHABBIR A, et al. A review: dew water collection from radiative passive collectors to recent developments of active collectors [J]. Sustainable Water Resources Management, 2016, 2(1): 71-86. doi: 10.1007/s40899-015-0038-z
|
[4] |
王雯雯, 葛天舒, 代彦军, 等. 太阳能吸附式空气取水研究现状 [J]. 太阳能, 2020, 309(1): 33-46.
WANG W W, GE T S, DAI Y J, et al. Status of solar-driven sorption-based atmosphere water harvesting[J]. Solar Energy, 2020, 309(1): 33-46 (in Chinese).
|
[5] |
TU R, HWANG Y H. Reviews of atmospheric water harvesting technologies [J]. Energy, 2020, 201: 117630. doi: 10.1016/j.energy.2020.117630
|
[6] |
TU Y D, WANG R Z, ZHANG Y N, et al. Progress and Expectation of Atmospheric Water Harvesting [J]. Joule, 2018, 2(8): 1452-1475. doi: 10.1016/j.joule.2018.07.015
|
[7] |
EJEIAN M, WANG R Z. Adsorption-based atmospheric water harvesting [J]. Joule, 2021, 5(7): 1678-1703. doi: 10.1016/j.joule.2021.04.005
|
[8] |
SLEITI A K, AL-KHAWAJA H, AL-KHAWAJA H, et al. Harvesting water from air using adsorption material - Prototype and experimental results [J]. Separation and Purification Technology, 2021, 257: 117921 doi: 10.1016/j.seppur.2020.117921
|
[9] |
GADO M G, NASSER M, HASSAN A A, et al. Adsorption-based atmospheric water harvesting powered by solar energy: Comprehensive review on desiccant materials and systems [J]. Process Safety and Environmental Protection, 2022, 160: 166-183. doi: 10.1016/j.psep.2022.01.061
|
[10] |
张晶, 赵惠忠, 张真真, 等. CaCl2复合吸附剂在太阳能空气取水的吸附性能实验研究 [J]. 应用化工, 2022, 51(2): 395-400.
ZHANG J, ZHAO H Z, ZHANG Z Z, et al. Experimental study on adsorption performance of CaCl2 composite adsorbent in solar air water intak[J]. Applied Chemical Industry, 2022, 51(2): 395-400(in Chinese).
|
[11] |
SHAN H, LI C, CHEN Z, et al. Exceptional water production yield enabled by batch-processed portable water harvester in semi-arid climate [J]. Nature Communication, 2022, 13(1): 5406. doi: 10.1038/s41467-022-33062-w
|
[12] |
YANG K, PAN T, LEI Q, et al. A Roadmap to Sorption-Based Atmospheric Water Harvesting: From Molecular Sorption Mechanism to Sorbent Design and System Optimization [J]. Environment Science Technology, 2021, 55(10): 6542-6560. doi: 10.1021/acs.est.1c00257
|
[13] |
耿浩清, 石成君, 苏亚欣, 等. 空气取水技术的研究进展 [J]. 化工进展, 2011, 30(8): 1664-1669. doi: 10.16085/j.issn.1000-6613.2011.08.004
Geng H Q, Shi C J, Su Y X, et al. Research progress of air water intake technology[J]. Chemical Industry Progress, 2011, 30(8): 1664-1669(in Chinese). doi: 10.16085/j.issn.1000-6613.2011.08.004
|
[14] |
LIU X, WANG X, KAPTEIJN F. Water and Metal-Organic Frameworks: From Interaction toward Utilization [J]. Chemical Reviews, 2020, 120(16): 8303-8377. doi: 10.1021/acs.chemrev.9b00746
|
[15] |
MOUCHAHAM G, CUI F S, NOUAR F, et al. Metal-Organic Frameworks and Water: 'From Old Enemies to Friends'? [J]. Trends in Chemistry, 2020, 2(11): 990-1003. doi: 10.1016/j.trechm.2020.09.004
|
[16] |
HU Y, YE Z, PENG X. Metal-organic frameworks for solar-driven atmosphere water harvesting [J]. Chemical Engineering Journal, 2023, 452(4): 139656. doi: 10.1016/j.cej.2022.139656
|
[17] |
KALMUTZKI M J, HANIKEL N, YAGHI O M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs [J]. Science Advance, 2018, 4(10): eaat9180. doi: 10.1126/sciadv.aat9180
|
[18] |
魏源送, 吴其洋, 郑利兵. 面向空气取水的金属有机框架 (MOFs) 材料研究进展[J]. 环境化学, 2024, 43(3): 1-14. doi: 10.7524/j.issn.0254-6108.2022082402
WEI Y S, WU Q Y, ZHENG L B. Research progress on metalorganic frameworks (MOFs) for atmosphere water harvesting [J]. Environmental Chemistry, 2023, 42 (X1): 1-14(in Chinese). doi: 10.7524/j.issn.0254-6108.2022082402
|
[19] |
KIM H, YANG S, RAO S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight [J]. Science, 2017, 356(6336): 430-434. doi: 10.1126/science.aam8743
|
[20] |
HANIKEL N, PREVOT M S, FATHIEH F, et al. Rapid Cycling and Exceptional Yield in a Metal-Organic Framework Water Harvester [J]. ACS Centeal Science, 2019, 5(10): 1699-1706. doi: 10.1021/acscentsci.9b00745
|
[21] |
FARHA O K, ERYAZICI I, JEONG N C, et al. Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? [J]. Journal of the American Chemical Society, 2012, 134(36): 15016-15021. doi: 10.1021/ja3055639
|
[22] |
YANAGITA K, HWANG J, SHAMIM J A, et al. Kinetics of Water Vapor Adsorption and Desorption in MIL-101 Metal–Organic Frameworks [J]. The Journal of Physical Chemistry C, 2018, 123(1): 387-398. doi: 10.1021/acs.jpcc.8b08211
|
[23] |
TOULOUMET Q, SILVESTER L, BOIS L, et al. Water sorption and heat storage in CaCl2 impregnated aluminium fumarate MOFs [J]. Solar Energy Materials and Solar Cells, 2021, 231: 111332 doi: 10.1016/j.solmat.2021.111332
|
[24] |
HU Y, FANG Z, MA X, et al. CaCl2 Nanocrystals decorated photothermal Fe-ferrocene MOFs hollow microspheres for atmospheric water harvesting [J]. Applied Materials Today, 2021, 23: 101076 doi: 10.1016/j.apmt.2021.101076
|
[25] |
RAVEESH G, GOYAL R, TYAGI S K. Advances in atmospheric water generation technologies [J]. Energy Conversion and Management, 2021, 239: 114226. doi: 10.1016/j.enconman.2021.114226
|
[26] |
AHNFELDT T, GUNZELMANN D, LOISEAU T, et al. Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology [J]. Inorganic Chemistry, 2009, 48(7): 3057-3064. doi: 10.1021/ic8023265
|
[27] |
TAN B Q, LUO Y S, LIANG X H, et al. In Situ Synthesis and Performance of Aluminum Fumarate Metal-Organic Framework Monolithic Adsorbent for Water Adsorption [J]. Industrial & Engineering Chemistry Research, 2019, 58(34): 15712-15720 . doi: 10.1021/acs.iecr.9b03172
|
[28] |
HANIKEL N, PEI X, CHHEDA S, et al. Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting [J]. Science, 2021, 374(6566): 454-459. doi: 10.1126/science.abj0890
|
[29] |
THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J]. Pure and Applied Chemistry, 2015, 87(9-10): 1051-1069. doi: 10.1515/pac-2014-1117
|
[30] |
WANG M, YU F Q. High-throughput screening of metal-organic frameworks for water harvesting from air [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126746. doi: 10.1016/j.colsurfa.2021.126746
|
[31] |
XU J, LI T, CHAO J, et al. Efficient Solar-Driven Water Harvesting from Arid Air with Metal-Organic Frameworks Modified by Hygroscopic Salt [J]. Angewandte Chemie Internationnal Edition English, 2020, 59(13): 5202-5210. doi: 10.1002/anie.201915170
|