[1] 钟庆. Bi7O9I3复合光催化剂的制备及其在光催化消毒中的应用[D]. 广州: 华南理工大学, 2021. ZHONG Q. Preparation of Bi7O9I3 composite photocatalyst and their application on photocatalytic disinfection[D]. Guangzhou: South China University of Technology, 2021 (in Chinese).
[2] de J SILERIO-VÁZQUEZ F, NÚÑEZ-NÚÑEZ C M, PROAL-NÁJERA J B, et al. A systematic review on solar heterogeneous photocatalytic water disinfection: Advances over time, operation trends, and prospects[J]. Catalysts, 2022, 12(11): 1314. doi: 10.3390/catal12111314
[3] 李晓怡, 吴珍涓, 陈欣, 等. 我国农村污水处理工艺分析及性能比较[J]. 农村实用技术, 2020(10): 177-178. LI X Y, WU Z J, CHEN X, et al. Analysis and performance comparison of rural sewage treatment process in China[J]. Nongcun Shiyong Jishu, 2020(10): 177-178 (in Chinese).
[4] LI Y P, WANG Q, HUANG L Y, et al. Enhanced LED-light-driven photocatalytic antibacterial by g-C3N4/BiOI composites[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(3): 2783-2794. doi: 10.1007/s10854-018-0554-3
[5] HAAKEN D, SCHMALZ V, DITTMAR T, et al. Limits of UV disinfection: UV/electrolysis hybrid technology as a promising alternative for direct reuse of biologically treated wastewater[J]. Journal of Water Supply: Research and Technology-Aqua, 2013, 62(7): 442-451. doi: 10.2166/aqua.2013.134
[6] CHEN D J, CHENG Y L, ZHOU N, et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review[J]. Journal of Cleaner Production, 2020, 268: 121725. doi: 10.1016/j.jclepro.2020.121725
[7] YAVUZ C, ERTEN-ELA S. Solar light-responsive α-Fe2O3/CdS/g-C3N4 ternary photocatalyst for photocatalytic hydrogen production and photodegradation of methylene blue[J]. Journal of Alloys and Compounds, 2022, 908: 164584. doi: 10.1016/j.jallcom.2022.164584
[8] WHITE J L, BARUCH M F, PANDER III J E, et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes[J]. Chemical Reviews, 2015, 115(23): 12888-12935. doi: 10.1021/acs.chemrev.5b00370
[9] WANG Z C, WANG Y X, PENG X Y, et al. Photocatalytic antibacterial agent incorporated double-network hydrogel for wound healing[J]. Colloids and Surfaces B: Biointerfaces, 2019, 180: 237-244. doi: 10.1016/j.colsurfb.2019.04.043
[10] 余致汐, 贺南南, 陈欢, 等. 甲壳素复合石墨相氮化碳的制备及光催化杀菌性能[J]. 环境化学, 2020, 39(5): 1271-1278. doi: 10.7524/j.issn.0254-6108.2019081206 YU Z X, HE N N, CHEN H, et al. Preparation of chitin composite graphite phase carbonitride and its photocatalytic sterilization performance[J]. Environmental Chemistry, 2020, 39(5): 1271-1278 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019081206
[11] MATSUNAGA T, TOMODA R, NAKAJIMA T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders[J]. FEMS Microbiology Letters, 1985, 29(1/2): 211-214.
[12] GELOVER S, GÓMEZ L A, REYES K, et al. A practical demonstration of water disinfection using TiO2 films and sunlight[J]. Water Research, 2006, 40(17): 3274-3280. doi: 10.1016/j.watres.2006.07.006
[13] 程萍, 顾明元, 金燕苹. TiO2光催化剂可见光化研究进展[J]. 化学进展, 2005, 17(1): 8-14. doi: 10.3321/j.issn:1005-281X.2005.01.002 CHENG P, GU M Y, JIN Y P. Recent progress in titania photocatalyst operating under visible light[J]. Progress in Chemistry, 2005, 17(1): 8-14 (in Chinese). doi: 10.3321/j.issn:1005-281X.2005.01.002
[14] CAO S W, LOW J, YU J G, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13): 2150-2176. doi: 10.1002/adma.201500033
[15] WEI H, McMASTER W A, TAN J Z Y, et al. Mesoporous TiO2/g-C3N4 microspheres with enhanced visible-light photocatalytic activity[J]. The Journal of Physical Chemistry C, 2017, 121(40): 22114-22122.
[16] 张梦凡, 张振民, 贾静雯, 等. Z-型异质结光催化剂的设计、制备和应用研究进展[J]. 有色金属科学与工程, 2020, 11(3): 18-32. ZHANG M F, ZHANG Z M, JIA J W, et al. Research progress in the design, fabrication and application of Z-scheme heterojunction photocatalysts[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 18-32 (in Chinese).
[17] 邵文惠, 胡欣, 尚静, 等. 高效广谱复合光催化抗菌剂Ag-AgVO3/BiVO4的设计合成及抗菌机制[J]. 高等学校化学学报, 2022, 43(10): 102-112. SHAO W H, HU X, SHANG J, et al. Design, synthesis and photocatalytic antibacterial mechanism of Ag-AgVO3/BiVO4 composite as a high-efficient and broad-spectral antibacterial agent[J]. Chemical Journal of Chinese Universities, 2022, 43(10): 102-112 (in Chinese).
[18] HE D Y, ZHANG Z C, XING Y, et al. Black phosphorus/graphitic carbon nitride: A metal-free photocatalyst for “green” photocatalytic bacterial inactivation under visible light[J]. Chemical Engineering Journal, 2020, 384: 123258. doi: 10.1016/j.cej.2019.123258
[19] WANG C F, LUO Y, LIU X M, et al. The enhanced photocatalytic sterilization of MOF-Based nanohybrid for rapid and portable therapy of bacteria-infected open wounds[J]. Bioactive Materials, 2022, 13: 200-211. doi: 10.1016/j.bioactmat.2021.10.033
[20] YU J G, WANG K, XIAO W, et al. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(23): 11492-11501.
[21] XIANG Y M, ZHOU Q L, LI Z Y, et al. A Z-scheme heterojunction of ZnO/CDots/C3N4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing[J]. Journal of Materials Science & Technology, 2020, 57: 1-11.
[22] 周建伟, 褚亮亮, 王储备, 等. 氮化碳改性二氧化钛增强可见光催化活性[J]. 新乡学院学报, 2016, 33(12): 21-26. doi: 10.3969/j.issn.1674-3326.2016.12.008 ZHOU J W, CHU L L, WANG C B, et al. Enhanced visible light photocatalytic activity of TiO2 modified by carbon nitride[J]. Journal of Xinxiang University, 2016, 33(12): 21-26 (in Chinese). doi: 10.3969/j.issn.1674-3326.2016.12.008
[23] 张娜娜, 金开锋, 周志坚, 等. g-C3N4/TiO2异质结光催化材料的制备及性能研究[J]. 新技术新工艺, 2022(1): 67-71. ZHANG N N, JIN K F, ZHOU Z J, et al. Research on preparation and properties of g-C3N4/TiO2 heterojunction photocatalytic materials[J]. New Technology & New Process, 2022(1): 67-71 (in Chinese).
[24] HE F, CHEN G, ZHOU Y S, et al. The facile synthesis of mesoporous g-C3N4 with highly enhanced photocatalytic H2 evolution performance[J]. Chemical Communications, 2015, 51(90): 16244-16246.
[25] 蒋蓉. 碳化细菌纤维素及其复合材料的制备对油水分离性能的研究[D]. 常州: 常州大学, 2022. JIANG R. Study on the preparation of carbonated bacterial cellulose and its composite materials in the oil-water separation performance[D]. CHangzhou: Changzhou University, 2022 (in Chinese).
[26] TONG Z W, YANG D, XIAO T X, et al. Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation[J]. Chemical Engineering Journal, 2015, 260: 117-125.
[27] 李媛, 韩玲珏, 王玥, 等. 光催化抗菌剂在医用抗菌方面的应用进展[J]. 中国材料进展, 2023, 42(2): 144-154. LI Y, HAN L J, WANG Y, et al. Application progress of photocatalytic AntibacterialAgents in medical antibacterial[J]. Materials China, 2023, 42(2): 144-154 (in Chinese).
[28] WANG W J, YU J C, XIA D H, et al. Graphene and g-C3N4 nanosheets cowrapped elemental α-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light[J]. Environmental Science & Technology, 2013, 47(15): 8724-8732.
[29] 马新国. 锐钛矿型TiO2表面的理论研究[D]. 武汉: 华中科技大学, 2006. MA X G. Theoretical study of anatase TiO2 surface[D]. Wuhan: Huazhong University of Science and Technology, 2006 (in Chinese).
[30] 葛艳清. 氮化碳及其复合材料的制备与光催化降解染料性能研究[D]. 昆明: 昆明理工大学, 2022. GE Y Q. Preparation of carbon nitride and its composites and study on photocatalytic degradation of dyes[D]. Kunming: Kunming University of Science and Technology, 2022 (in Chinese).