[1] |
中华人民共和国环境保护部, 国土资源部. 全国土壤污染状况调查公报 [EB/OL]. [2014-04-17]. http://www.gov.cn/foot/2014-04/17/content_2661768.htm.
Ministry of Environmental Protection and Ministry of Land and Resources of the People's Republic of China. National soilpollution survey bulletin. [EB/OL]. [2014-04-17]. http://www.gov.cn/foot/2014-04/17/content_2661768.htm.
|
[2] |
中华人民共和国生态环境部. 2021中国生态环境状况公报 [EB/OL]. [2022-05-27]. https://www.mee.gov.cn/hjzl/sthjzk/
Ministry of Ecology and Environment of the People's Republic of China. 2021 China's state of the environment report [EB/OL]. [2022-05-27]. https://www.mee.gov.cn/hjzl/sthjzk/
|
[3] |
WANG Q, O'HARE D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets [J]. Chemical Reviews, 2012, 112(7): 4124-4155. doi: 10.1021/cr200434v
|
[4] |
LI C M, WEI M, EVANS D G, et al. Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents [J]. Small, 2014, 10(22): 4469-4486. doi: 10.1002/smll.201401464
|
[5] |
GU Z, ATHERTON J J, XU Z P. Hierarchical layered double hydroxide nanocomposites: structure, synthesis and applications [J]. Chemical Communications, 2015, 51(15): 3024-3036. doi: 10.1039/C4CC07715F
|
[6] |
KONG X G, HAO P P, DUAN H H. Super-stable mineralization effect of layered double hydroxides for heavy metals: Application in soil remediation and perspective [J]. Exploration, 2021, 1(2): 20210052. doi: 10.1002/EXP.20210052
|
[7] |
ZUBAIR M, DAUD M, MCKAY G, et al. Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation [J]. Applied Clay Science, 2017, 143: 279-292. doi: 10.1016/j.clay.2017.04.002
|
[8] |
PANG H W, WU Y H, WANG X X, et al. Recent advances in composites of graphene and layered double hydroxides for water remediation: A review [J]. Chemistry-an Asian Journal, 2019, 14(15): 2542-2552. doi: 10.1002/asia.201900493
|
[9] |
JIJOE P S, YASHAS S R, Shivaraju H P. Fundamentals, synthesis, characterization and environmental applications of layered double hydroxides: A review [J]. Environmental Chemistry Letters, 2021, 19(3): 2643-2661. doi: 10.1007/s10311-021-01200-3
|
[10] |
ZHAO M Q, ZHANG Q, HUANG J Q, et al. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides - properties, synthesis, and applications [J]. Advanced Functional Materials, 2012, 22(4): 675-694. doi: 10.1002/adfm.201102222
|
[11] |
GU P C, ZHANG S, LI X, et al. Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution [J]. Environmental Pollution, 2018, 240: 493-505. doi: 10.1016/j.envpol.2018.04.136
|
[12] |
JOBBAGY M, IYI N. Interplay of charge density and relative humidity on the structure of nitrate layered double hydroxides [J]. Journal of Physical Chemistry C, 2010, 114(42): 18153-18158. doi: 10.1021/jp1078778
|
[13] |
GOH K H, LIM T T, DONG Z L. Application of layered double hydroxides for removal of oxyanions: A review [J]. Water Research, 2008, 42(6-7): 1343-1368. doi: 10.1016/j.watres.2007.10.043
|
[14] |
ZHONG Y, YANG Q, LUO K, et al. Fe(II)-Al(Ⅲ) layered double hydroxides prepared by ultrasound-assisted co-precipitation method for the reduction of bromate[J]. [J]. Journal of Hazardous Materials, 2013, 250: 345-353.
|
[15] |
GOMES SILVA C, BOUIZI Y, FORNES V, et al. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water [J]. Journal of the American Chemical Society, 2009, 131(38): 13833-13839. doi: 10.1021/ja905467v
|
[16] |
廖玉梅, 余杰, 魏世强, 等. FeMnNi-LDHs对水中As(Ⅲ)的吸附性能与机制[J]. [J]. 环境科学, 2021, 42((1): ): 293-304.
LIAO Y M, YU J, WEI S Q, et al. Adsorption effect and mechanism of aqueous arsenic on FeMnNi-LDHs[J]. [J]. Environmental Science, 2021, 42((1): ): 293-304 (in Chinese).
|
[17] |
EIBY S H J, TOBLER D J, NEDEL S, et al. Competition between chloride and sulphate during the reformation of calcined hydrotalcite [J]. Applied Clay Science, 2016, 132: 650-659.
|
[18] |
ZHAO Y, LI F, ZHANG R, et al. Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps [J]. Chemistry of Materials, 2002, 14(10): 4286-4291. doi: 10.1021/cm020370h
|
[19] |
李天, 郝晓杰, 白莎, 等. 单层类水滑石纳米片的可控合成及规模生产展望 [J]. 物理化学学报, 2020, 36(9): 71-87.
LI T, HAO X J, BAI S, et al. Controllable synthesis and scale-up production prospect of monolayer layered double hydroxide nanosheets [J]. Acta Physico-Chimica Sinica. 2020, 36(9): 71-87 (in Chinese).
|
[20] |
OGAWA M, ASAI S. Hydrothermal synthesis of layered double hydroxide-deoxycholate intercalation compounds [J]. Chemistry of Materials, 2000, 12(11): 3253-3255. doi: 10.1021/cm000455n
|
[21] |
FETTER G, HERNÁNDEZ F, MAUBERT A M, et al. Microwave irradiation effect on hydrotalcite synthesis [J]. Journal of Porous Materials, 1997, 4: 27-30. doi: 10.1023/A:1009619005529
|
[22] |
YAN K, LIU Y Q, LU Y R, et al. Catalytic application of layered double hydroxide-derived catalysts for the conversion of biomass-dderived molecules [J]. Catalysis Science & Technology, 2017, 7(8): 1622-1645.
|
[23] |
QU J, ZHANG Q W, LI X W, et al. Mechanochemical approaches to synthesize layered double hydroxides: a review [J]. Applied Clay Science, 2016, 119: 185-192. doi: 10.1016/j.clay.2015.10.018
|
[24] |
MI J X, CHEN X P, ZHANG Q Y, et al. Mechanochemically synthesized MgAl layered double hydroxide nanosheets for efficient catalytic removal of carbonyl sulfide and H2S [J]. Chemical Communications, 2019, 55(63): 9375-9378. doi: 10.1039/C9CC03637G
|
[25] |
SCHWARZENBACH R P, ESCHER B I, FENNER K, et al. The challenge of micropollutants in aquatic systems [J]. Science, 2006, 313(5790): 1072-1077. doi: 10.1126/science.1127291
|
[26] |
TRAN H N, NGUYEN D T, LE G T, et al. Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review [J]. Journal of Hazardous Materials, 2019, 373: 258-270. doi: 10.1016/j.jhazmat.2019.03.018
|
[27] |
MAYER B K, BAKER L A, BOYER T H, et al. Total value of phosphorus recovery [J]. Environmental Science & Technology, 2016, 50(13): 6606-6620.
|
[28] |
YADAV K K, KUMAR S, QUOC BAO P, et al. Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review [J]. Ecotoxicology and Environmental Safety, 2019, 182: 109362. doi: 10.1016/j.ecoenv.2019.06.045
|
[29] |
YAN H L, CHEN Q W, LIU J H, et al. Phosphorus recovery through adsorption by layered double hydroxide nano-composites and transfer into a struvite-like fertilizer [J]. Water Research, 2018, 145: 721-730. doi: 10.1016/j.watres.2018.09.005
|
[30] |
EVERAERT M, WARRINNIER R, BAKEN S, et al. Phosphate-exchanged Mg-Al layered double hydroxides: A new slow release phosphate fertilizer [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(8): 4280-4287.
|
[31] |
吴俊麟, 林建伟, 詹艳慧, 等. 镁铁层状双金属氢氧化物对磷酸盐的吸附作用及对内源磷释放的控制效果及机制 [J]. 环境科学, 2020, 41(1): 273-284. doi: 10.13227/j.hjkx.201907174
WU J L, LIN J W, ZHAN Y H, et al. Adsorption of phosphate on Mg/Fe layered double hydroxides (Mg/Fe-LDH) and use of Mg/Fe-LDH as an amendment for controlling phosphorus release from sediments [J]. Environmental Science, 2020, 41(1): 273-283 (in Chinese). doi: 10.13227/j.hjkx.201907174
|
[32] |
REN C, ZHOU M Z, LIU Z M, et al. Enhanced fluoride uptake by layered double hydroxides under alkaline conditions: Solid-state NMR evidence of the role of surface >MgOH sites [J]. Environmental Science & Technology, 2021, 55(22): 15082-15089.
|
[33] |
AYOOB S, GUPTA A K, BHAT V T. A conceptual overview on sustainable technologies for the defluoridation of drinking water [J]. Critical Reviews in Environmental Science and Technology, 2008, 38(6): 401-470. doi: 10.1080/10643380701413310
|
[34] |
CHEN P, WANG T, XIAO Y, et al. Efficient fluoride removal from aqueous solution by synthetic Fe-Mg-La tri-metal nanocomposite and the analysis of its adsorption mechanism [J]. Journal of Alloys and Compounds, 2018, 738: 118-129. doi: 10.1016/j.jallcom.2017.12.142
|
[35] |
ZHANG Y Y, KONG B, SHEN Z Y, et al. Phosphorus binding by lanthanum modified pyroaurite-like clay: Performance and mechanisms [J]. ACS ES&T Engineering, 2021, 1(11): 1565-1575.
|
[36] |
ZHANG Y Y, WANG M L, GAO X, et al. Structural evolution of lanthanum hydroxides during long-term phosphate mitigation: Effect of nanoconfinement [J]. Environmental Science & Technology, 2021, 55(1): 665-676.
|
[37] |
ASHEKUZZAMAN S M, JIANG J Q. Study on the sorption-desorption-regeneration performance of Ca-, Mg- and CaMg-based layered double hydroxides for removing phosphate from water [J]. Chemical Engineering Journal, 2014, 246: 97-105. doi: 10.1016/j.cej.2014.02.061
|
[38] |
MA S L, HUANG L, MA L, et al. Efficient uranium capture by polysulfide/layered double hydroxide composites [J]. Journal of the American Chemical Society, 2015, 137(10): 3670-3677. doi: 10.1021/jacs.5b00762
|
[39] |
ZHOU H G, TAN Y L, YANG Y M, et al. Application of FeMgMn layered double hydroxides for phosphate anions adsorptive removal from water [J]. Applied Clay Science, 2021, 200: 105903. doi: 10.1016/j.clay.2020.105903
|
[40] |
LIANG X F, ZANG Y B, XU Y M, et al. Sorption of metal cations on layered double hydroxides [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2013, 433: 122-131.
|
[41] |
GOH K-H, LIM T-T, DONG Z L. Enhanced arsenic removal by hydrothermally treated nanocrystalline Mg/Al layered double hydroxide with nitrate intercalation [J]. Environmental Science & Technology, 2009, 43(7): 2537-2543.
|
[42] |
LV Z M, YANG S M, ZHU H S, et al. Highly efficient removal of As(V) by using NiAl layered double oxide composites [J]. Applied Surface Science, 2018, 448: 599-608. doi: 10.1016/j.apsusc.2018.04.162
|
[43] |
GONG J M, LIU T, WANG X Q, et al. Efficient removal of heavy metal ions from aqueous systems with the assembly of anisotropic layered double hydroxide nanocrystals@carbon nanosphere [J]. Environmental Science & Technology, 2011, 45(14): 6181-6187.
|
[44] |
CHI H Y, WANG J K, WANG H J, et al. Super-stable mineralization of Ni2+ ions from wastewater using CaFe layered double hydroxide [J]. Advanced Functional Materials, 2022, 32(5): 2106645. doi: 10.1002/adfm.202106645
|
[45] |
MA S L, CHEN Q M, LI H, et al. Highly selective and efficient heavy metal capture with polysulfide intercalated layered double hydroxides [J]. Journal of Materials Chemistry A, 2014, 2(26): 10280-10289. doi: 10.1039/C4TA01203H
|
[46] |
MA L J, WANG Q, ISLAM S M, et al. Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42- ion [J]. Journal of the American Chemical Society, 2016, 138(8): 2858-2866. doi: 10.1021/jacs.6b00110
|
[47] |
YANG L X, XIE L X, CHU M L, et al. Mo3S132- intercalated layered double hydroxide: Highly selective removal of heavy metals and simultaneous reduction of Ag+ ions to metallic Ag0 ribbons [J]. Angewandte Chemie-International Edition, 2021, 61(1): e202112511.
|
[48] |
CHEN H, LIN J H, ZHANG N, et al. Preparation of MgAl-EDTA-LDH based electrospun nanofiber membrane and its adsorption properties of copper(II) from wastewater [J]. Journal of Hazardous Materials, 2018, 345: 1-9. doi: 10.1016/j.jhazmat.2017.11.002
|
[49] |
CELIK A, BAKER D R, ARSLAN Z, et al. Highly efficient, rapid, and concurrent removal of toxic heavy metals by the novel 2D hybrid LDH-[Sn2S6] [J]. Chemical Engineering Journal, 2021, 426: 131696. doi: 10.1016/j.cej.2021.131696
|
[50] |
DAUD M, HAI A, BANAT F, et al. A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH) - Containing hybrids as promising adsorbents for dyes removal [J]. Journal of Molecular Liquids, 2019, 288: 110989. doi: 10.1016/j.molliq.2019.110989
|
[51] |
ZHAO P W, LIU X H, TIAN W L, et al. Adsolubilization of 2, 4, 6-trichlorophenol from aqueous solution by surfactant intercalated ZnAl layered double hydroxides [J]. Chemical Engineering Journal, 2015, 279: 597-604. doi: 10.1016/j.cej.2015.05.037
|
[52] |
YANG X J, ZHANG P, LI P, et al. Layered double hydroxide/polyacrylamide nanocomposite hydrogels: Green preparation, rheology and application in methyl orange removal from aqueous solution [J]. Journal of Molecular Liquids, 2019, 280: 128-134. doi: 10.1016/j.molliq.2019.02.033
|
[53] |
SHAN R R, YAN L G, YANG K, et al. Magnetic Fe3O4/MgAl-LDH composite for effective removal of three red dyes from aqueous solution [J]. Chemical Engineering Journal, 2014, 252: 38-46. doi: 10.1016/j.cej.2014.04.105
|
[54] |
XIONG T, YUAN X Z, WANG H, et al. Highly efficient removal of diclofenac sodium from medical wastewater by Mg/Al layered double hydroxide-poly(m-phenylenediamine) composite [J]. Chemical Engineering Journal, 2019, 366: 83-91. doi: 10.1016/j.cej.2019.02.069
|
[55] |
XU Z P, ZHANG J, ADEBAJO M O, et al. Catalytic applications of layered double hydroxides and derivatives [J]. Applied Clay Science, 2011, 53(2): 139-150. doi: 10.1016/j.clay.2011.02.007
|
[56] |
WANG J, GONG Q, ALI J, et al. pH-dependent transformation products and residual toxicity evaluation of sulfamethoxazole degradation through non-radical oxygen species involved process [J]. Chemical Engineering Journal, 2020, 390: 124512. doi: 10.1016/j.cej.2020.124512
|
[57] |
FAN G L, LI F, EVANS D G, et al. Catalytic applications of layered double hydroxides: recent advances and perspectives [J]. Chemical Society Reviews, 2014, 43(20): 7040-7066. doi: 10.1039/C4CS00160E
|
[58] |
HUANG D, MA J, FAN C, et al. Co-Mn-Fe complex oxide catalysts from layered double hydroxides for decomposition of methylene blue: Role of Mn [J]. Applied Clay Science, 2018, 152: 230-238. doi: 10.1016/j.clay.2017.11.018
|
[59] |
YANG F, CAO Z F, WANG J, et al. In situ self-assembly of molybdenum disulfide/Mg-Al layered double hydroxide composite for enhanced photocatalytic activity [J]. Journal of Alloys and Compounds, 2020, 817: 153308. doi: 10.1016/j.jallcom.2019.153308
|
[60] |
WANG L, LI Z, WU Q, et al. Layered structure-based materials: challenges and opportunities for radionuclide sequestration [J]. Environmental Science-Nano, 2020, 7(3): 724-752. doi: 10.1039/C9EN01429B
|
[61] |
KANG M J, RHEE S W, MOON H. Sorption of MO4– (M = Tc, Re) on Mg/Al layered double hydroxide by anion exchange [J]. Radiochimica Acta, 1996, 75(3): 169-173. doi: 10.1524/ract.1996.75.3.169
|
[62] |
WANG X X, YU S Q, WU Y H, et al. The synergistic elimination of uranium (VI) species from aqueous solution using bi-functional nanocomposite of carbon sphere and layered double hydroxide [J]. Chemical Engineering Journal, 2018, 342: 321-330. doi: 10.1016/j.cej.2018.02.102
|
[63] |
CELIK A, LI D, QUINTERO M A, et al. Removal of CrO42–, a nonradioactive surrogate of 99TcO4– using LDH-Mo3S13 nanosheets [J]. Environmental Science & Technology, 2022, 56(12): 8590-8598.
|
[64] |
LINGHU W S, YANG H, SUN Y X, et al. One-pot synthesis of LDH/GO composites as highly effective adsorbents for decontamination of U(VI) [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5608-5616.
|
[65] |
ZHANG F Z, ZHAO L L, CHEN H Y, et al. Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum [J]. Angewandte Chemie-International Edition, 2008, 47(13): 2466-2469. doi: 10.1002/anie.200704694
|
[66] |
DUTTA K, PRAMANIK A. Synthesis of a novel cone-shaped CaAl-layered double hydroxide (LDH): Its potential use as a reversible oil sorbent [J]. Chemical Communications, 2013, 49(57): 6427-6429. doi: 10.1039/c3cc42260g
|
[67] |
LIU X J, GE L, LI W, et al. Layered double hydroxide functionalized textile for effective oil/water separation and selective oil adsorption [J]. ACS Applied Materials & Interfaces, 2015, 7(1): 791-800.
|
[68] |
CUI J Y, ZHOU Z P, XIE A, et al. Facile preparation of grass-like structured NiCo-LDH/PVDF composite membrane for efficient oil-water emulsion separation [J]. Journal of Membrane Science, 2019, 573: 226-233. doi: 10.1016/j.memsci.2018.11.064
|
[69] |
TIAN Q Y, LIU Q Y, ZHOU J, et al. Superhydrophobic sponge containing silicone oil-modified layered double hydroxide sheets for rapid oil-water separations [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2019, 570: 339-346.
|
[70] |
PAVLOVIC M, ADOK-SIPICZKI M, NARDIN C, et al. Effect of macroraft copolymer adsorption on the colloidal stability of layered double hydroxide nanoparticles [J]. Langmuir, 2015, 31(46): 12609-12617. doi: 10.1021/acs.langmuir.5b03372
|
[71] |
KONG X R, CHEN J H, TANG Y J, et al. Enhanced removal of vanadium(V) from groundwater by layered double hydroxide-supported nanoscale zerovalent iron [J]. Journal of Hazardous Materials, 2020, 392: 122392. doi: 10.1016/j.jhazmat.2020.122392
|
[72] |
LAIPAN M W, YU J F, ZHU R L, et al. Functionalized layered double hydroxides for innovative applications [J]. Materials Horizons, 2020, 7(3): 715-745. doi: 10.1039/C9MH01494B
|
[73] |
YU W, XIE H Q. A review on nanofluids: Preparation, stability mechanisms, and applications [J]. Journal of Nanomaterials, 2012: 435873.
|
[74] |
VASTI C, GIACOMELLI C E, ROJAS R. Pros and cons of coating layered double hydroxide nanoparticles with polyacrylate [J]. Applied Clay Science, 2019, 172: 11-18. doi: 10.1016/j.clay.2019.02.016
|
[75] |
GU Z, ZUO H L, LI L, et al. Pre-coating layered double hydroxide nanoparticles with albumin to improve colloidal stability and cellular uptake [J]. Journal of Materials Chemistry B, 2015, 3(16): 3331-3339. doi: 10.1039/C5TB00248F
|
[76] |
SHAO M F, NING F Y, ZHAO J W, et al. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins [J]. Journal of the American Chemical Society, 2012, 134(2): 1071-1077. doi: 10.1021/ja2086323
|
[77] |
WANG Q Q, HUANG J, MA C Y, et al. Highly efficient and reusable Mg-Fe layered double hydroxides anchored in attapulgite for uranium uptake from wastewater [J]. Chemosphere, 2023: 138055.
|
[78] |
YANG M S, LIU J F, CHANG Z, et al. Mg/Al-CO3 layered double hydroxide nanorings [J]. Journal of Materials Chemistry, 2011, 21(38): 14741-14746. doi: 10.1039/c1jm12129d
|
[79] |
LV W Y, DU M, YE W J, et al. The formation mechanism of layered double hydroxide nanoscrolls by facile trinal-phase hydrothermal treatment and their adsorption properties [J]. Journal of Materials Chemistry A, 2015, 3(46): 23395-23402. doi: 10.1039/C5TA05218A
|
[80] |
WANG C J, O'HARE D. Topotactic synthesis of layered double hydroxide nanorods [J]. Journal of Materials Chemistry, 2012, 22(43): 23064-23070. doi: 10.1039/c2jm34670b
|
[81] |
CHEN L B, LI C C, WEI Y H, et al. Hollow LDH nanowires as excellent adsorbents for organic dye [J]. Journal of Alloys and Compounds, 2016, 687: 499-505. doi: 10.1016/j.jallcom.2016.05.344
|
[82] |
WANG X, CAI Y W, HAN T H, et al. Phosphate functionalized layered double hydroxides (phos-LDH) for ultrafast and efficient U(VI) uptake from polluted solutions [J]. Journal of Hazardous Materials, 2020, 399: 123081. doi: 10.1016/j.jhazmat.2020.123081
|
[83] |
LEI C S, ZHU X F, ZHU B C, et al. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions [J]. Journal of Hazardous Materials, 2017, 321: 801-811. doi: 10.1016/j.jhazmat.2016.09.070
|
[84] |
ZOU Y D, WANG X X, WU F, et al. Controllable synthesis of Ca-Mg-Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(VI) from wastewater solutions [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 1173-1185.
|
[85] |
MANDAL S, MAYADEVI S. Cellulose supported layered double hydroxides for the adsorption of fluoride from aqueous solution [J]. Chemosphere, 2008, 72(6): 995-998. doi: 10.1016/j.chemosphere.2008.03.053
|
[86] |
MANDEL K, DRENKOVA-TUHTAN A, HUTTER F, et al. Layered double hydroxide ion exchangers on superparamagnetic microparticles for recovery of phosphate from waste water [J]. Journal of Materials Chemistry A, 2013, 1(5): 1840-1848. doi: 10.1039/C2TA00571A
|
[87] |
PATZKO A, KUN R, HORNOK V, et al. ZnAl-layer double hydroxides as photocatalysts for oxidation of phenol in aqueous solution [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2005, 265(1-3): 64-72.
|
[88] |
LI J, FAN Q H, WU Y J, et al. Magnetic polydopamine decorated with Mg-Al LDH nanoflakes as a novel bio-based adsorbent for simultaneous removal of potentially toxic metals and anionic dyes [J]. Journal of Materials Chemistry A, 2016, 4(5): 1737-1746. doi: 10.1039/C5TA09132B
|
[89] |
HAO M J, GAO P, YANG D, et al. Highly efficient adsorption behavior and mechanism of Urea-Fe3O4@LDH for triphenyl phosphat [J]. Environmental Pollution, 2020, 267: 114142. doi: 10.1016/j.envpol.2020.114142
|
[90] |
LIMA E, DE JESUS MARTINEZ-ORTIZ M, GUTIERREZ REYES R I, et al. Fluorinated hydrotalcites: The addition of highly electronegative species in layered double hydroxides to tune basicity [J]. Inorganic Chemistry, 2012, 51(14): 7774-7781. doi: 10.1021/ic300799e
|
[91] |
XU Y F, DAI Y C, ZHOU J Z, et al. Removal efficiency of arsenate and phosphate from aqueous solution using layered double hydroxide materials: intercalation vs. precipitation [J]. Journal of Materials Chemistry, 2010, 20(22): 4684-4691. doi: 10.1039/b926239c
|
[92] |
CHEN L H, XU H M, XIE J K, et al. [SnS4]4- clusters modified MgAl-LDH composites for mercury ions removal from acid wastewater [J]. Environmental Pollution, 2019, 247: 146-154. doi: 10.1016/j.envpol.2018.12.009
|
[93] |
LI X J, XIN M Y, GUO S, et al. Insight of synergistic effect of different active metal ions in layered double hydroxides on their electrochemical behaviors [J]. Electrochimica Acta, 2017, 253: 302-310. doi: 10.1016/j.electacta.2017.09.075
|
[94] |
FU Y, NING F Y, XU S M, et al. Terbium doped ZnCr-layered double hydroxides with largely enhanced visible light photocatalytic performance [J]. Journal of Materials Chemistry A, 2016, 4(10): 3907-3913. doi: 10.1039/C5TA10093C
|
[95] |
MORI K, TAGA T, YAMASHITA H. Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid [J]. ACS Catalysis, 2017, 7(5): 3147-3151. doi: 10.1021/acscatal.7b00312
|
[96] |
MIKAMI G, GROSU F, KAWAMURA S, et al. Harnessing self-supported Au nanoparticles on layered double hydroxides comprising Zn and Al for enhanced phenol decomposition under solar light [J]. Applied Catalysis B-Environmental, 2016, 199: 260-271. doi: 10.1016/j.apcatb.2016.06.031
|
[97] |
MA J F, DING J F, YU L M, et al. BiOCl dispersed on NiFe-LDH leads to enhanced photo-degradation of Rhodamine B dye [J]. Applied Clay Science, 2015, 109: 76-82.
|
[98] |
LI Z, CHEN M, ZHANG Q W, et al. Mechanochemical synthesis of ultrafine ZnS/Zn-Al layered double hydroxide heterojunction and their photocatalytic activities in dye degradation [J]. Applied Clay Science, 2017, 144: 115-120. doi: 10.1016/j.clay.2017.05.015
|
[99] |
JUNG I K, JO Y, HAN S C, et al. Efficient removal of iodide anion from aqueous solution with recyclable core-shell magnetic Fe3O4@Mg/Al layered double hydroxide (LDH) [J]. Science of the Total Environment, 2020, 705: 135814. doi: 10.1016/j.scitotenv.2019.135814
|