[1] ZHOU L J, YING G G, ZHAO J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China[J]. Environmental Pollution, 2011, 159(7): 1877-1885. doi: 10.1016/j.envpol.2011.03.034
[2] NA G, GU J, GE L, et al. Detection of 36 antibiotics in coastal waters using high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Oceanology and Limnology, 2011, 29(5): 1093-1102. doi: 10.1007/s00343-011-0225-1
[3] LI, Y W, WU, X L, MO, C H, et al. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, southern China[J]. Journal of agricultural and food chemistry, 2011, 59(13): 7268-7276. doi: 10.1021/jf1047578
[4] ALLEN H K, DONATO J, WANG H H, et al. Call of the wild: Antibiotic resistance genes in natural environments[J]. Nature Reviews Microbiology, 2010, 8(4): 251-259. doi: 10.1038/nrmicro2312
[5] 张娣, 王懿萱, 牛红云, 等. 纳米Fe3O4/H2O2降解诺氟沙星[J]. 环境科学, 2011, 32(10): 2943-2948.
[6] CHEN S, DENG J, YE C, et al. Simultaneous removal of para-arsanilic acid and the released inorganic arsenic species by CuFe2O4 activated peroxymonosulfate process[J]. Science of the Total Environment, 2020, 742:140587.
[7] ZHENG S, JIANG W, CAI Y, et al. Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2 suspension[J]. Catalysis Today, 2014, 224: 83-88. doi: 10.1016/j.cattod.2013.09.040
[8] ZHAO Z, PAN S, YE Y, et al. FeS2/H2O2 mediated water decontamination from p- arsanilic acid via coupling oxidation, adsorption and coagulation: Performance and mechanism[J]. Chemical Engineering Journal, 2020, 381: 122667. doi: 10.1016/j.cej.2019.122667
[9] XIE X, ZHAO W, HU Y, et al. Permanganate oxidation and ferric ion precipitation (KMnO4 -Fe (III)) process for treating phenylarsenic compounds[J]. Chemical Engineering Journal, 2019, 357: 600-610. doi: 10.1016/j.cej.2018.09.194
[10] SNYDER S A, WERT E C, REXING D J, et al. Ozone oxidation of endocrine disruptors and pharmaceuticals in surface water and wastewater[J]. Ozone:Science & Engineering, 2007, 28(6): 445-460.
[11] 马富军, 李新洋, 宗博洋, 等. 电-多相臭氧催化技术处理金刚烷胺制药废水[J]. 中国环境科学, 2018, 38(10): 3713-3719. doi: 10.3969/j.issn.1000-6923.2018.10.014
[12] MISHRA V S, MAHAJANI V V, JOSHI J B. Wet air oxidation[J]. Industrial & Engineering Chemistry Research, 1995, 34(1): 2-48.
[13] 张宣娇, 孙羽, 刘明, 等. CeO2形貌结构对催化湿式空气氧化苯酚性能的影响[J]. 中国环境科学, 2020, 40(10): 4330-4334. doi: 10.3969/j.issn.1000-6923.2020.10.016
[14] SIMOND O, SCHALLER V, COMNINELLIS C. Theoretical model for the anodic oxidation of organics on metal oxide electrodes[J]. Electrochimica Acta, 1997, 42(13-14): 2009-2012. doi: 10.1016/S0013-4686(97)85475-8
[15] 周玉莲, 于永波, 黄湾, 等. 氧化石墨烯电催化高效降解有机染料RBk5[J]. 中国环境科学, 2019, 39(11): 4653-4659. doi: 10.3969/j.issn.1000-6923.2019.11.021
[16] RODOPULO A. K. Oxidation of tartaric acid in wine in the presence of heavy metal salts (activation of oxygen by iron)[J]. Izvestiia Akademii nauk SSSR. Seriia biologicheskaia, 1951, 3: 115-128.
[17] 杨远秀, 姚创, 刘晖, 等. 磁性Fen+@GO非均相Fenton催化氧化亚甲基蓝[J]. 中国环境科学, 2018, 38(5): 1719-1726. doi: 10.3969/j.issn.1000-6923.2018.05.014
[18] CHAO W, GUO C Y, HAI C, et al. Degradation of norfloxacin by hydroxylamine enhanced fenton system: Kinetics, mechanism and degradation pathway[J]. Chemosphere, 2021, 270: 129408. doi: 10.1016/j.chemosphere.2020.129408
[19] WAN Z, WANG J L. Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst[J]. Journal of hazardous materials, 2017, 324(B): 653-664.
[20] LI J, LI X, HAN J, et al. Mesoporous bimetallic Fe/Co as highly active heterogeneous Fenton catalyst for the degradation of tetracycline hydrochlorides[J]. Scientific Reports, 2019, 9(1): 1-11. doi: 10.1038/s41598-018-37186-2
[21] LIU J, DU Y, SUN W, et al. et al., Preparation of new adsorbent-supported Fe/Ni particles for the removal of crystal violet and methylene blue by a heterogeneous Fenton-like reaction[J]. RSC Advances, 2019, 9(39): 22513-22522. doi: 10.1039/C9RA04710G
[22] WU D, FENG Y, MA L. Oxidation of azo dyes by H2O2 in presence of natural pyrite[J]. Water, Air, & Soil Pollution, 2013, 224(2): 1-11.
[23] CHEN H, ZHANG Z, YANG Z, et al. Heterogeneous fenton-like catalytic degradation of 2, 4-dichlorophenoxyacetic acid in water with FeS[J]. Chemical Engineering Journal, 2015, 273: 481-489. doi: 10.1016/j.cej.2015.03.079
[24] GUO C, TONG X, GUO X Y. Solvothermal synthesis of FeS2 nanoparticles for photoelectrochemical hydrogen generation in neutral water[J]. Materials Letters, 2015, 161: 220-223. doi: 10.1016/j.matlet.2015.08.112
[25] STUCKI, J. W. The quantitative assay of minerals for Fe2+ and Fe3+ using 1, 10-phenanthroline: II. A photochemical method[J]. Soil Science Society of America Journal, 1981, 45(3): 638-641. doi: 10.2136/sssaj1981.03615995004500030040x
[26] LI D, ZHU X, ZHONG Y, et al. Abiotic transformation of hexabromocyclododecane by sulfidated nanoscale zerovalent iron: Kinetics, mechanism and influencing factors[J]. Water Research, 2017, 121: 140-149. doi: 10.1016/j.watres.2017.05.019
[27] MORALES-GALLARDO M V, AYALA A M, MOU P, et al. Synthesis of pyrite FeS2 nanorods by simple hydrothermal method and its photocatalytic activity[J]. Chemical Physics Letters, 2016, 660: 93-98. doi: 10.1016/j.cplett.2016.07.046
[28] WANG Z. , DU Y., ZHOU P., et al. Strategies based on electron donors to accelerate Fe (III)/Fe (II) cycle in Fenton or Fenton-like processes[J]. Chemical Engineering Journal, 2023, 454: 140096. doi: 10.1016/j.cej.2022.140096
[29] 曾令玉. 黄铁矿(FeS2)异相 Fenton 反应催化氧化对硝基酚的研究[D]. 武汉: 华中科技大学, 2019.
[30] EGGLESTON, CARRICK M, EHRHARDT, et al. Surface structural controls on pyrite oxidation kinetics: An XPS-UPS, STM, and modeling study[J]. American Mineralogist, 2015, 81(9-10): 1036-1056.
[31] CAI Y F, PAN Y G, XUE J Y, et al. Comparative XPS study between experimentally and naturally weathered pyrites[J]. Applied Surface Science, 2010, 255(21): 8750-8760.
[32] 吕源财. 纳米零价铁钯/微生物联合体系降解2, 2’, 4, 4’-四溴联苯醚的研究[D]. 广州: 华南理工大学, 2016.
[33] ZHANG Y, ZHOU Z, WEN F, et al. A flower-like MoS2 decorated MgFe2O4 nanocomposite: Mimicking peroxidase and colorimetric detection of H2O2 and glucose[J]. Sensors and Actuators B-Chemical, 2018, 275: 155-162. doi: 10.1016/j.snb.2018.08.051
[34] REN B, MIAO J F, XU Y L, et al. A grape-like N-doped carbon/CuO-Fe2O3 nanocomposite as a highly active heterogeneous Fenton-like catalyst in methylene blue degradation[J]. Journal of Cleaner Production, 2019, 240: 118143. doi: 10.1016/j.jclepro.2019.118143
[35] WEN X J, NIU C G, HUANG D W, et al. Study of the photocatalytic degradation pathway of norfloxacin and mineralization activity using a novel ternary Ag/AgCl-CeO2 photocatalyst[J]. Journal of Catalysis, 2017, 355: 73-86. doi: 10.1016/j.jcat.2017.08.028
[36] HUBICKA, URSZULAA, ŻMUDZKI P, et al. Photodegradation assessment of ciprofloxacin, moxifloxacin, norfloxacin and ofloxacin in the presence of excipients from tablets by UPLC-MS/MS and DSC[J]. Springer International Publishing, 2013, 7(1): 133.
[37] WANG G, ZHAO D Y, KOU F Y, et al. Removal of norfloxacin by surface Fenton system (MnFe2O4 /H2O2): Kinetics, mechanism and degradation pathway[J]. Chemical Engineering Journal, 2018, 351: 747-755. doi: 10.1016/j.cej.2018.06.033
[38] LIU C, NANABOINA V, KORSHIN G V, et al. Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater[J]. Water Research, 2012, 46(16): 5235-5246. doi: 10.1016/j.watres.2012.07.005
[39] ZHOU T, ZOU X L, WU X H, et al. Synergistic degradation of antibiotic norfloxacin in a novel heterogeneous sonochemical Fe0/tetraphosphate Fenton-like system[J]. Ultrasonics Sonochemistry, 2017, 37(1): 320-327.
[40] WU D, CHEN Y, ZHANG Y, et al. Ferric iron enhanced chloramphenicol oxidation in pyrite (FeS2) induced Fenton-like reactions[J]. Separation and Purification Technology, 2015, 154: 60-67. doi: 10.1016/j.seppur.2015.09.016
[41] 周 洋. 基于黄铁矿的非均相类-Fenton反应高效降解邻苯二甲酸二乙酯的机制研究[D]. 芜湖: 安徽师范大学, 2019.
[42] ZHANG W J, GAO H Y, HE J J, et al. Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: Optimization of operating conditions and degradation pathway[J]. Separation and Purification Technology, 2017, 172: 158-167. doi: 10.1016/j.seppur.2016.08.008
[43] CHE H, BAE S, LEE W, et al. Degradation of trichloroethylene by Fenton reaction in pyrite suspension[J]. Journal of Hazardous Materials, 2011, 185(2/3): 1355-1361.