[1] JAIN C K, SINGH R D. Technological options for the removal of arsenic with special reference to South East Asia[J]. Journal of Environmental Management, 2012, 107: 1-18.
[2] 严群, 桂勇刚, 周娜娜, 等. 混凝沉淀法处理含砷选矿废水[J]. 环境工程学报, 2014, 8(9): 3683-3688.
[3] 陆俏利, 瞿广飞, 吴斌, 等. 矿区含砷尾矿及废渣稳定化研究[J]. 环境工程学报, 2016, 10(5): 2587-2594. doi: 10.12030/j.cjee.201412257
[4] 徐方男. 新型铁锰氧化物对水体中砷镉吸附性能及机理研究[D]. 杭州: 浙江大学, 2020.
[5] 郭凌, 卜玉山, 张曼, 等. 煤基腐殖酸对外源砷胁迫下玉米生长及生理性状的影响[J]. 环境工程学报, 2014, 8(2): 758-766.
[6] AREDES S, KLEIN, PAWLIK M. The removal of arsenic from water using natural iron oxide minerals[J]. Journal of Cleaner Production, 2013, 60: 71-76. doi: 10.1016/j.jclepro.2012.10.035
[7] 冷迎祥, 刘菲, 王文娟, 等. 小分子有机酸对纳米铁稳定砷的影响[J]. 环境工程学报, 2017, 11(5): 3195-3203. doi: 10.12030/j.cjee.201606010
[8] WANG M, CHEN Z, SONG W, et al. A review on cadmium exposure in the population and intervention strategies against cadmium toxicity[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(1): 65-74. doi: 10.1007/s00128-020-03088-1
[9] WU J, ZHANG H, HE P J, et al. Cr(VI) removal from aqueous solution by dried activated sludge biomass[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 697-703.
[10] BASHA C A, SELVI S J, RAMASAMY E, et al. Removal of arsenic and sulphate from the copper smelting industrial effluent[J]. Chemical Engineering Journal, 2008, 141(1/2/3): 89-98.
[11] LUONG V T, KURZ E E C, HELLRIEGEL U, et al. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects[J]. Water Research, 2018, 133: 110-122. doi: 10.1016/j.watres.2018.01.007
[12] 乔洪涛, 乔永生, 秦瑞红, 等. 微波酸改性生物炭的制备及其对Cd2+的吸附性能研究[J]. 化工新型材料, 2020, 48(4): 212-216.
[13] 蒋国民, 王云燕, 柴立元, 等. 高铁酸钾处理含砷废水[J]. 过程工程学报, 2009, 9(6): 1109-1114. doi: 10.3321/j.issn:1009-606X.2009.06.013
[14] AINIWAER M, ZHANG T, ZHANG N, et al. Synergistic removal of As (III) and Cd (II) by sepiolite-modified nanoscale zero-valent iron and a related mechanistic study[J]. Journal of Environmental Management, 2022, 319: 115658. doi: 10.1016/j.jenvman.2022.115658
[15] SHU H Y, CHANG M C, CHEN C C, et al. Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution[J]. Journal of Hazardous Materials, 2010, 184(1/2/3): 499-505.
[16] GUAN X, SUN Y, QIN H, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Research, 2015, 75: 224-248. doi: 10.1016/j.watres.2015.02.034
[17] 黄菲, 闫梦, 常建宁, 等. 不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性能[J]. 环境化学, 2020, 39(4): 1116-1128. doi: 10.7524/j.issn.0254-6108.2019091604
[18] 曾涛涛, 农海杜, 沙海超, 等. 污泥基生物炭负载纳米零价铁去除Cr(VI)的性能与机制[J]. 复合材料学报, 2022, 40: 1-13.
[19] 刘勇, 黄超, 翁秀兰, 等. 绿色合成纳米铁去除水中铬离子[J]. 环境工程学报, 2016, 10(8): 4118-4124. doi: 10.12030/j.cjee.201601146
[20] 金晓英, 杨露, 林强, 等. 绿色合成纳米铁镍去除水中Cr(Ⅵ)的动力学及机理[J]. 环境科学学报, 2022, 42(10): 284-292.
[21] SAIF S, TAHIR A, CHEN Y. Green synthesis of iron nanoparticles and their environmental applications and implications[J]. Nanomaterials, 2016, 6(11): 209. doi: 10.3390/nano6110209
[22] MITTAL A K, CHISTI Y, BANERJEE U C. Synthesis of metallic nanoparticles using plant extracts[J]. Biotechnology Advances, 2013, 31(2): 346-356. doi: 10.1016/j.biotechadv.2013.01.003
[23] HOAG G E, COLLINS J B, HOLCOMB J L, et al. Degradation of bromothymol blue by ‘greener’nano-scale zero-valent iron synthesized using tea polyphenols[J]. Journal of Materials Chemistry, 2009, 19(45): 8671-8677. doi: 10.1039/b909148c
[24] 曾慎亮, 翁秀兰, 童玉贵, 等. 绿色合成纳米铁同时去除水体中的Pb(Ⅱ)和Cd(Ⅱ)[J]. 环境科学学报, 2015, 35(11): 3538-3544. doi: 10.13671/j.hjkxxb.2015.0008
[25] 李赛. 绿色合成纳米零价铁与膨胀珍珠岩负载纳米零价铁降解混合染料的研究[D]. 太原: 太原理工大学, 2019.
[26] MU Y, JIA F, AI Z, et al. Iron oxide shell mediated environmental remediation properties of nano zero-valent iron[J]. Environmental Science:Nano, 2017, 4(1): 27-45. doi: 10.1039/C6EN00398B
[27] RAMOS M A V, YAN W, LI X, et al. Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core−shell structure[J]. Journal of Physical Chemistry C, 2009, 113(33): 14591-14594. doi: 10.1021/jp9051837
[28] XIAO J, GAO B, YUE Q, et al. Removal of trihalomethanes from reclaimed-water by original and modified nanoscale zero-valent iron: characterization, kinetics and mechanism[J]. Chemical Engineering Journal, 2015, 262: 1226-1236. doi: 10.1016/j.cej.2014.10.080
[29] 盛杰, 傅浩洋, 王伟, 等. 纳米零价铁的表征及改性研究进展[J]. 环境化学, 2020, 39(11): 2959-2978. doi: 10.7524/j.issn.0254-6108.2020070803
[30] ÖZÇIMEN D, ERSOY-MERIÇBOYU A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials[J]. Renewable Energy, 2010, 35(6): 1319-1324. doi: 10.1016/j.renene.2009.11.042
[31] MANDAL S, PU S, HE L, et al. Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil[J]. Environmental Pollution, 2020, 259: 113851. doi: 10.1016/j.envpol.2019.113851
[32] 李强, 杜玉成, 李杨, 等. 硅藻土基纳米结构AlOOH-MnO2复合氧化物沉积制备及其对As(Ⅴ)吸附性能[J]. 中国粉体技术, 2019, 25(4): 61-69.
[33] KANEL S R, MANNING B, CHARLET L, et al. Removal of arsenic (III) from groundwater by nanoscale zero-valent iron[J]. Environmental Science & Technology, 2005, 39(5): 1291-1298.
[34] 夏雪芬, 滑熠龙, 黄潇月, 等. 纳米零价铁对水中砷和硒去除的比较研究[J]. 化学学报, 2017, 75(6): 594.
[35] SU C, PULS R W. Arsenate and arsenite removal by zerovalent iron: Kinetics, redox transformation, and implications for in situ groundwater remediation[J]. Environmental Science & Technology, 2001, 35(7): 1487-1492.
[36] 杜琼. 树脂基纳米零价铁氧化—吸附同步去除水体As(Ⅲ)的特性研究[D]. 南京: 南京大学, 2014.
[37] LI T, LIU Y, PENG Q, et al. Removal of lead (II) from aqueous solution with ethylenediamine-modified yeast biomass coated with magnetic chitosan microparticles: Kinetic and equilibrium modeling[J]. Chemical Engineering Journal, 2013, 214: 189-197. doi: 10.1016/j.cej.2012.10.055
[38] 曹玮. 磁性生物炭去除废水中Pb2+、Cd2+的效果及机制初探[D]. 长沙: 中南林业科技大学, 2016.
[39] 苏文龙, 成应向, 陈韬, 等. 芬顿污泥制备磁性吸附剂去除水中Sb(Ⅴ)[J]. 环境工程学报, 2022, 16(7): 2165-2177. doi: 10.12030/j.cjee.202202014
[40] XU H, GAO M, HU X, et al. A novel preparation of S-nZVI and its high efficient removal of Cr(VI) in aqueous solution[J]. Journal of Hazardous Materials, 2021, 416: 125924. doi: 10.1016/j.jhazmat.2021.125924
[41] 郭可心, 田佳一, 孙煜璨, 等. 磁性污泥基生物炭对Pb2+的吸附性能[J]. 环境工程学报, 2022, 16(5): 1416-1428. doi: 10.12030/j.cjee.202201003
[42] AHMED W, MEHMOOD S, NÚÑEZ-DELGADO A, et al. Utilization of Citrullus lanatus L. seeds to synthesize a novel MnFe2O4-biochar adsorbent for the removal of U(VI) from wastewater: Insights and comparison between modified and raw biochar[J]. Science of the Total Environment, 2021, 771: 144955. doi: 10.1016/j.scitotenv.2021.144955
[43] 樊建新, 秦亮, 段婷, 等. Fe3O4改性生物质炭对As的吸附特征研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(10): 111-118.
[44] YAN W, RAMOS M A V, KOEL B E, et al. As (III) sequestration by iron nanoparticles: Study of solid-phase redox transformations with X-ray photoelectron spectroscopy[J]. Journal of Physical Chemistry C, 2012, 116(9): 5303-5311. doi: 10.1021/jp208600n
[45] WANG P, FU F, LIU T. A review of the new multifunctional nano zero-valent iron composites for wastewater treatment: Emergence, preparation, optimization and mechanism[J]. Chemosphere, 2021, 285: 131435. doi: 10.1016/j.chemosphere.2021.131435
[46] O’CARROLL D, SLEEP B, KROL M, et al. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation[J]. Advances in Water Resources, 2013, 51: 104-122. doi: 10.1016/j.advwatres.2012.02.005
[47] MANNING B A, HUNT M L, AMRHEIN C, et al. Arsenic (III) and arsenic (V) reactions with zerovalent iron corrosion products[J]. Environmental Science & Technology, 2002, 36(24): 5455-5461.
[48] LIU K, LI F, CUI J, et al. Simultaneous removal of Cd(II) and As(III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: synergistic effects and mechanisms[J]. Journal of Hazardous Materials, 2020, 395: 122623. doi: 10.1016/j.jhazmat.2020.122623
[49] 李美蓉, 唐晨柳, 张伟贤, 等. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[50] LI Z, DENG S, YU G, et al. As(V) and As(III) removal from water by a Ce–Ti oxide adsorbent: Behavior and mechanism[J]. Chemical Engineering Journal, 2010, 161(1/2): 106-113.
[51] 周世民. 铁基纳米复合材料的制备及对砷吸附性能研究[D]. 天津: 天津大学, 2016.