[1] XU G, YANG X, SPINOSA L. Development of sludge-based adsorbents: Preparation, characterization, utilization and its feasibility assessment[J]. Journal of Environmental Management, 2015, 151: 221-232.
[2] AHMAD T, AHMAD K, ALAM M. Sustainable management of water treatment sludge through 3'R' concept [J]. Journal of Cleaner Production, 2016: 1-13.
[3] A. , O. , BABATUNDE, et al. Constructive Approaches Toward Water Treatment Works Sludge Management: An International Review of Beneficial Reuses [J]. Critical Reviews in Environmental Science & Technology, 2007.
[4] WANG C, LIU X, WANG M, et al. Desorption of nitrogen from drinking water treatment residue: Implications for environmental recycling[J]. Journal of Cleaner Production, 2019, 226: 96-105. doi: 10.1016/j.jclepro.2019.04.002
[5] OOI T Y, YONG E L, DIN M F M, et al. Optimization of aluminium recovery from water treatment sludge using Response Surface Methodology[J]. Journal of Environmental Management, 2018, 228: 13-19.
[6] 高礼雄, 丁汝茜, 姚燕, 等. 混凝土的微生物腐蚀: 机理, 影响因素, 评价指标及防护技术[J]. 材料导报, 2018, 32(3): 7.
[7] MUYNCK W D, BELIE N D, VERSTRAETE W. Effectiveness of admixtures, surface treatments and antimicrobial compounds against biogenic sulfuric acid corrosion of concrete[J]. Cement and Concrete Composites, 2013, 31(3): 163-170.
[8] OWAID H M, HAMID R, TAHA M R. Influence of thermally activated alum sludge ash on the engineering properties of multiple-blended binders concretes[J]. Construction & Building Materials, 2014, 61: 216-229.
[9] JIANG G, ZHOU M, CHIU T H, et al. Wastewater Enhanced Microbial Corrosion of Concrete Sewers[J]. Environmental Science & Technology, 2016, 50(15): 8084.
[10] 张永涛, 邓成辉, 王家栋, 等. 高炉矿渣改性铝酸盐水泥的性能研究[J]. 重庆科技学院学报(自然科学版), 2022(3): 24.
[11] WANG, LEI, ZOU, et al. A novel type of controlled low strength material derived from alum sludge and green materials [J]. Construction & Building Materials, 2018.
[12] LIN C. Lightweight aggregate made from sewage sludge and incinerated ash [J]. Waste Management, 2006.
[13] MONZO J, PAYA J, BORRACHERO M V, et al. Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars[J]. Waste Management, 2003, 23(4): 373-381. doi: 10.1016/S0956-053X(03)00034-5
[14] WOLFF E, SCHWABE W K, CONCEICAO S V. Utilization of water treatment plant sludge in structural ceramics[J]. Journal of Cleaner Production, 2015, 96: 282-289. doi: 10.1016/j.jclepro.2014.06.018
[15] PAN S C, TSENG D H, LEE C C, et al. Influence of the fineness of sewage sludge ash on the mortar properties[J]. Cement & Concrete Research, 2003, 33(11): 1749-1754.
[16] ZDEB T, TRACZ T, ADAMCZYK M. Characterisation of Basic Properties of Mineral Binders with Calcined Water Treatment Sludge [J]. Materials Science and Engineering, 2019.
[17] 中国建筑材料科学研究总院. 通用硅酸盐水泥GB175-2007[S]. 北京: 中华人民共和国国家质量监督检验检疫总局;中国国家标准化管理委员会. 2007: 12.
[18] 贾琼. 基于铝污泥的水泥基材料开发及其耐生物腐蚀性能研究 [D]. 西安: 西安建筑科技大学, 2021.
[19] 中国建筑科学研究院, 北京建工集团有限责任公司, 中国建筑材料科学研究总院, 等. 普通混凝土配合比设计规程: JGJ55-2011[S]. 行业标准-建筑工业. 2011: 56P. ;B5.
[20] 中国建筑科学研究院, 清华大学, 同济大学材料科学与工程学院, 等. 普通混凝土力学性能试验方法标准: GB/T 50081-2002[S]. 北京: 国家质检总局. 2003: 69P. ;A5.
[21] 中国寰球工程有限公司, 中国石油和化工勘察设计协会. 工业建筑防腐蚀设计标准: GB/T50046-2018[S]. 北京: 中华人民共和国住房和城乡建设部;国家市场监督管理总局. 2018: 139.
[22] 彭晖, 李树霖, 蔡春声, 等. 偏高岭土基地质聚合物的配合比及养护条件对其力学性能及凝结时间的影响研究[J]. 硅酸盐通报, 2014, 33(11): 10.
[23] 中国建筑材料科学研究总院, 厦门艾思欧标准砂有限公司, 浙江中富建筑集团股份有限公司. 水泥标准稠度用水量、凝结时间、安定性检验方法: GB/T1346-2011[S]. 北京: 中华人民共和国国家质量监督检验检疫总局;中国国家标准化管理委员会. 2011: 12.
[24] 简险峰, 王栋民, 黄天勇, 等. 普通硅酸盐水泥基矿物掺合料对硫铝酸盐水泥性能的影响[J]. 硅酸盐通报, 2014, 33(4): 4.
[25] 施惠生, 方泽锋. 粉煤灰对水泥浆体早期水化和孔结构的影响[J]. 硅酸盐学报, 2004, 32(1): 4. doi: 10.3321/j.issn:0454-5648.2004.01.017
[26] ZENG J, SHUI Z, WANG G. The early hydration and strength development of high-strength precast concrete with cement/metakaolin systems[J]. 武汉理工大学学报:材料科学英文版, 2010(4): 5.
[27] 陈益兰, 赵亚妮, 李静, 等. 偏高岭土替代硅灰配制高性能混凝土[J]. 硅酸盐学报, 2004, 32(4): 6. doi: 10.3321/j.issn:0454-5648.2004.04.026
[28] 严建华, 于子豪, 冷发光, 等. 玻璃粉对掺矿粉和粉煤灰混凝土抗氯离子渗透性能影响对比研究[J]. 混凝土, 2019(7): 6. doi: 10.3969/j.issn.1002-3550.2019.07.002
[29] Innovative approach to simulating the biodeterioration of industrial cementitious products in sewer environment. Part II: Validation on CAC and BFSC linings[J]. Cement & Concrete Research, 2016, 79: 409-418.