[1] LI Q, DAI T, WANG G, et al. Iron material flow analysis for production, consumption, and trade in China from 2010 to 2015[J]. J Clean Prod, 2018, 172: 1807-1813. doi: 10.1016/j.jclepro.2017.12.006
[2] ZHOU W, LIU X, LYU X, et al. Extraction and separation of copper and iron from copper smelting slag: A review[J]. J Clean Prod, 2022, 368: 133095. doi: 10.1016/j.jclepro.2022.133095
[3] SUN Y, ZHU X, HAN Y, et al. Iron recovery from refractory limonite ore using suspension magnetization roasting: A pilot-scale study[J]. J Clean Prod, 2020, 261: 121221. doi: 10.1016/j.jclepro.2020.121221
[4] LV X, SHEN W, WANG L, et al. A comparative study on the practical utilization of iron tailings as a complete replacement of normal aggregates in dam concrete with different gradation[J]. J Clean Prod, 2019, 211: 704-715. doi: 10.1016/j.jclepro.2018.11.107
[5] LI S, WU J, HUO Y, et al. Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in Northwest China[J]. Sci Total Environ, 2021, 752: 141827. doi: 10.1016/j.scitotenv.2020.141827
[6] WANG P, SUN Z, HU Y, et al. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact[J]. Sci Total Environ, 2019, 695: 133893. doi: 10.1016/j.scitotenv.2019.133893
[7] LI M, PENG B, CHAI L, et al. Recovery of iron from zinc leaching residue by selective reduction roasting with carbon[J]. J Hazard Mater, 2012, 237-238: 323-330. doi: 10.1016/j.jhazmat.2012.08.052
[8] DENG J, NING X-A, SHEN J, et al. Biomass waste as a clean reductant for iron recovery of iron tailings by magnetization roasting[J]. J Environ Manage, 2022, 317: 115435. doi: 10.1016/j.jenvman.2022.115435
[9] YUAN S, ZHOU W, HAN Y, et al. Individual enrichment of manganese and iron from complex refractory ferromanganese ore by suspension magnetization roasting and magnetic separation[J]. Powder Technol, 2020, 373: 689-701. doi: 10.1016/j.powtec.2020.07.005
[10] 中华人民共和国国家统计局生态环境部. 2021中国环境统计年鉴 [M]. 北京: 中国统计出版社, 2021.
[11] CHEN X, NING X-A, LAI X, et al. Chlorophenols in textile dyeing sludge: Pollution characteristics and environmental risk control[J]. J Hazard Mater, 2021, 416: 125721. doi: 10.1016/j.jhazmat.2021.125721
[12] NING X-A, LIN M-Q, SHEN L-Z, et al. Levels, composition profiles and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sludge from ten textile dyeing plants[J]. Environ Res, 2014, 132: 112-118. doi: 10.1016/j.envres.2014.03.041
[13] ZHOU W, CHEN X, WANG Y, et al. Anaerobic co-digestion of textile dyeing sludge: Digestion efficiency and heavy metal stability[J]. Sci Total Environ, 2021, 801: 149722. doi: 10.1016/j.scitotenv.2021.149722
[14] HAO X, CHEN Q, VAN LOOSDRECHT M C M, et al. Sustainable disposal of excess sludge: Incineration without anaerobic digestion[J]. Water Res, 2020, 170: 115298. doi: 10.1016/j.watres.2019.115298
[15] LIU J, HUANG L, ZOU H, et al. Do FeCl3 and FeCl3/CaO conditioners change pyrolysis and incineration performances, emissions, and elemental fates of textile dyeing sludge?[J]. J Hazard Mater, 2021, 413: 125334. doi: 10.1016/j.jhazmat.2021.125334
[16] CHENG W P. Hydrolysis characteristic of polyferric sulfate coagulant and its optimal condition of preparation[J]. Colloids Surf Physicochem Eng Aspects, 2001, 182(1): 57-63.
[17] LIU X, WU Y, XU Q, et al. Mechanistic insights into the effect of poly ferric sulfate on anaerobic digestion of waste activated sludge[J]. Water Res, 2021, 189: 116645. doi: 10.1016/j.watres.2020.116645
[18] SONG Y, HU J, LIU J, et al. CO2-assisted co-pyrolysis of textile dyeing sludge and hyperaccumulator biomass: Dynamic and comparative analyses of evolved gases, bio-oils, biochars, and reaction mechanisms[J]. J Hazard Mater, 2020, 400: 123190. doi: 10.1016/j.jhazmat.2020.123190
[19] DING Z, LIU J, CHEN H, et al. Co-pyrolysis performances, synergistic mechanisms, and products of textile dyeing sludge and medical plastic wastes[J]. Sci Total Environ, 2021, 799: 149397. doi: 10.1016/j.scitotenv.2021.149397
[20] YUAN S, WANG X, ZHANG H, et al. Experimental and mechanism research of the effects of alkali on the reduction reaction of hematite during roasting reduction reaction[J]. Adv Powder Technol, 2022, 33(6): 103592. doi: 10.1016/j.apt.2022.103592
[21] YU J, LI Y, LV Y, et al. Recovery of iron from high-iron red mud using suspension magnetization roasting and magnetic separation[J]. Miner Eng, 2022, 178: 107394. doi: 10.1016/j.mineng.2022.107394
[22] ZHANG Y, LI H, YU X. Recovery of iron from cyanide tailings with reduction roasting–water leaching followed by magnetic separation[J]. J Hazard Mater, 2012, 213-214: 167-174. doi: 10.1016/j.jhazmat.2012.01.076
[23] QIU G, NING X, SHEN J, WANG Y, ZHANG D, DENG J. Recovery of iron from iron tailings by suspension magnetization roasting with biomass-derived pyrolytic gas[J]. Waste Manage, 2023, 156: 255-263. doi: 10.1016/j.wasman.2022.11.034
[24] LI Y, ZHANG Q, YUAN S, et al. High-efficiency extraction of iron from early iron tailings via the suspension roasting-magnetic separation[J]. Powder Technol, 2021, 379: 466-477. doi: 10.1016/j.powtec.2020.10.005
[25] SALAMA W, EL AREF M, GAUPP R. Spectroscopic characterization of iron ores formed in different geological environments using FTIR, XPS, Mössbauer spectroscopy and thermoanalyses[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 136: 1816-1826. doi: 10.1016/j.saa.2014.10.090
[26] OMRAN M, FABRITIUS T, ELMAHDY A M, et al. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore[J]. Appl Surf Sci, 2015, 345: 127-140. doi: 10.1016/j.apsusc.2015.03.209