[1] PLASTICSEUROPE. Plastics – the Facts 2020. [EB/OL]. [2022-12-19].
[2] ZHANG C N, WANG J, ZHOU A G, et al. Species-specific effect of microplastics on fish embryos and observation of toxicity kinetics in larvae[J]. Journal of Hazardous Materials, 2021, 403: 123948. doi: 10.1016/j.jhazmat.2020.123948
[3] CUNNINGHAM E M, EHLERS S M, DICK J T A, et al. High abundances of microplastic pollution in deep-sea sediments: Evidence from Antarctica and the southern ocean[J]. Environmental Science & Technology, 2020, 54(21): 13661-13671.
[4] FENG S S, LU H W, YAO T C, et al. Spatial characteristics of microplastics in the high-altitude area on the Tibetan Plateau[J]. Journal of Hazardous Materials, 2021, 417: 126034. doi: 10.1016/j.jhazmat.2021.126034
[5] ZHANG Y L, GAO T, KANG S C, et al. Microplastics in glaciers of the Tibetan Plateau: Evidence for the long-range transport of microplastics[J]. Science of the Total Environment, 2021, 758: 143634. doi: 10.1016/j.scitotenv.2020.143634
[6] PARKER B W, BECKINGHAM B A, INGRAM B C, et al. Microplastic and tire wear particle occurrence in fishes from an urban estuary: Influence of feeding characteristics on exposure risk[J]. Marine Pollution Bulletin, 2020, 160: 111539. doi: 10.1016/j.marpolbul.2020.111539
[7] OUYANG X G, DUARTE C M, CHEUNG S G, et al. Fate and effects of macro- and microplastics in coastal wetlands[J]. Environmental Science & Technology, 2022, 56(4): 2386-2397.
[8] PESTANA C J, MOURA D S, CAPELO-NETO J, et al. Potentially poisonous plastic particles: Microplastics as a vector for cyanobacterial toxins microcystin-LR and microcystin-LF[J]. Environmental Science & Technology, 2021, 55(23): 15940-15949.
[9] WANG Y H, YANG Y N, LIU X, et al. Interaction of microplastics with antibiotics in aquatic environment: Distribution, adsorption, and toxicity[J]. Environmental Science & Technology, 2021, 55(23): 15579-15595.
[10] PANNETIER P, MORIN B, Le BIHANIC F, et al. Environmental samples of microplastics induce significant toxic effects in fish larvae[J]. Environment International, 2020, 134: 105047. doi: 10.1016/j.envint.2019.105047
[11] BATEL A, BORCHERT F, REINWALD H, et al. Microplastic accumulation patterns and transfer of benzo[a]pyrene to adult zebrafish (Danio rerio) gills and zebrafish embryos[J]. Environmental Pollution, 2018, 235: 918-930. doi: 10.1016/j.envpol.2018.01.028
[12] TREVISAN R, VOY C, CHEN S X, et al. Nanoplastics decrease the toxicity of a complex PAH mixture but impair mitochondrial energy production in developing zebrafish[J]. Environmental Science & Technology, 2019, 53(14): 8405-8415.
[13] 丁平, 张丽娟, 黄道建, 等. 微塑料对海洋生物的毒性效应及机理研究进展[J]. 海洋湖沼通报, 2021, 43(2): 144-153. doi: 10.13984/j.cnki.cn37-1141.2021.02.019 DING P, ZHANG L J, HUANG D J, et al. Toxic effect and mechanism of microplastics on marine organisms[J]. Transactions of Oceanology and Limnology, 2021, 43(2): 144-153 (in Chinese). doi: 10.13984/j.cnki.cn37-1141.2021.02.019
[14] ZHAO Y P, QIAO R X, ZHANG S Y, et al. Metabolomic profiling reveals the intestinal toxicity of different length of microplastic fibers on zebrafish (Danio rerio)[J]. Journal of Hazardous Materials, 2021, 403: 123663. doi: 10.1016/j.jhazmat.2020.123663
[15] ZITOUNI N, BOUSSERRHINE N, MISSAWI O, et al. Uptake, tissue distribution and toxicological effects of environmental microplastics in early juvenile fish Dicentrarchus labrax[J]. Journal of Hazardous Materials, 2021, 403: 124055. doi: 10.1016/j.jhazmat.2020.124055
[16] KIM J H, YU Y B, CHOI J H. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: A review[J]. Journal of Hazardous Materials, 2021, 413: 125423. doi: 10.1016/j.jhazmat.2021.125423
[17] RAWSON D M, ZHANG T, KALICHARAN D, et al. Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasma membrane and syncytial layers of the gastrula-stage embryo of the zebrafish Brachydanio rerio: A consideration of the structural and functional relationships with respect to cryoprotectant penetration[J]. Aquaculture Research, 2000, 31(3): 325-336. doi: 10.1046/j.1365-2109.2000.00401.x
[18] DUAN Z H, DUAN X Y, ZHAO S, et al. Barrier function of zebrafish embryonic chorions against microplastics and nanoplastics and its impact on embryo development[J]. Journal of Hazardous Materials, 2020, 395: 122621. doi: 10.1016/j.jhazmat.2020.122621
[19] LEE W S, CHO H J, KIM E, et al. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos[J]. Nanoscale, 2019, 11(7): 3173-3185. doi: 10.1039/C8NR09321K
[20] PITT J A, KOZAL J S, JAYASUNDARA N, et al. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2018, 194: 185-194. doi: 10.1016/j.aquatox.2017.11.017
[21] QIANG L Y, CHENG J P. Exposure to microplastics decreases swimming competence in larval zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2019, 176: 226-233. doi: 10.1016/j.ecoenv.2019.03.088
[22] PITT J A, TREVISAN R, MASSARSKY A, et al. Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): A case study with nanopolystyrene[J]. Science of the Total Environment, 2018, 643: 324-334. doi: 10.1016/j.scitotenv.2018.06.186
[23] Van POMEREN M, BRUN N R, PEIJNENBURG W J G M, et al. Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages[J]. Aquatic Toxicology, 2017, 190: 40-45. doi: 10.1016/j.aquatox.2017.06.017
[24] YU F, YANG C F, ZHU Z L, et al. Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment[J]. Science of the Total Environment, 2019, 694: 133643. doi: 10.1016/j.scitotenv.2019.133643
[25] CHEN Q Q, YIN D Q, JIA Y L, et al. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish[J]. Science of the Total Environment, 2017, 609: 1312-1321. doi: 10.1016/j.scitotenv.2017.07.144
[26] KARAMI A, GROMAN D B, WILSON S P, et al. Biomarker responses in zebrafish (Danio rerio) larvae exposed to pristine low-density polyethylene fragments[J]. Environmental Pollution, 2017, 223: 466-475. doi: 10.1016/j.envpol.2017.01.047
[27] LU Y F, ZHANG Y, DENG Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7): 4054-4060.
[28] QIAO R X, DENG Y F, ZHANG S H, et al. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish[J]. Chemosphere, 2019, 236: 124334. doi: 10.1016/j.chemosphere.2019.07.065
[29] QIAO R X, LU K, DENG Y F, et al. Combined effects of polystyrene microplastics and natural organic matter on the accumulation and toxicity of copper in zebrafish[J]. Science of the Total Environment, 2019, 682: 128-137. doi: 10.1016/j.scitotenv.2019.05.163
[30] SKJOLDING L M, AŠMONAITĖ G, JØLCK R I, et al. An assessment of the importance of exposure routes to the uptake and internal localisation of fluorescent nanoparticles in zebrafish (Danio rerio), using light sheet microscopy[J]. Nanotoxicology, 2017, 11(3): 351-359. doi: 10.1080/17435390.2017.1306128
[31] VENEMAN W J, SPAINK H P, BRUN N R, et al. Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish larvae[J]. Aquatic Toxicology, 2017, 190: 112-120. doi: 10.1016/j.aquatox.2017.06.014
[32] CHEN Q Q, LACKMANN C, WANG W Y, et al. Microplastics lead to hyperactive swimming behaviour in adult zebrafish[J]. Aquatic Toxicology, 2020, 224: 105521. doi: 10.1016/j.aquatox.2020.105521
[33] MAK C W, CHING-FONG YEUNG K, CHAN K M. Acute toxic effects of polyethylene microplastic on adult zebrafish[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109442. doi: 10.1016/j.ecoenv.2019.109442
[34] CHEN Q Q, GUNDLACH M, YANG S Y, et al. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity[J]. Science of the Total Environment, 2017, 584/585: 1022-1031. doi: 10.1016/j.scitotenv.2017.01.156
[35] MALAFAIA G, de SOUZA A M, PEREIRA A C, et al. Developmental toxicity in zebrafish exposed to polyethylene microplastics under static and semi-static aquatic systems[J]. Science of the Total Environment, 2020, 700: 134867. doi: 10.1016/j.scitotenv.2019.134867
[36] LIMONTA G, MANCIA A, BENKHALQUI A, et al. Microplastics induce transcriptional changes, immune response and behavioral alterations in adult zebrafish[J]. Scientific Reports, 2019, 9(1): 1-11. doi: 10.1038/s41598-018-37186-2
[37] SARASAMMA S, AUDIRA G, SIREGAR P, et al. Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in zebrafish: Throwing up alarms of wide spread health risk of exposure[J]. International Journal of Molecular Sciences, 2020, 21(4): 1410. doi: 10.3390/ijms21041410
[38] ZHAO Y, BAO Z W, WAN Z Q, et al. Polystyrene microplastic exposure disturbs hepatic glycolipid metabolism at the physiological, biochemical, and transcriptomic levels in adult zebrafish[J]. Science of the Total Environment, 2020, 710: 136279. doi: 10.1016/j.scitotenv.2019.136279
[39] XIE J, FARAGE E, SUGIMOTO M, et al. A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development[J]. BMC Developmental Biology, 2010, 10: 76. doi: 10.1186/1471-213X-10-76
[40] RAFTIS J B, MILLER M R. Nanoparticle translocation and multi-organ toxicity: A particularly small problem[J]. Nano Today, 2019, 26: 8-12. doi: 10.1016/j.nantod.2019.03.010
[41] GEISER M, ROTHEN-RUTISHAUSER B, KAPP N, et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells[J]. Environmental Health Perspectives, 2005, 113(11): 1555-1560. doi: 10.1289/ehp.8006
[42] MATTSSON K, JOHNSON E V, MALMENDAL A, et al. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain[J]. Scientific Reports, 2017, 7(1): 1-7. doi: 10.1038/s41598-016-0028-x
[43] SÖKMEN T Ö, SULUKAN E, TÜRKOĞLU M, et al. Polystyrene nanoplastics (20 nm) are able to bioaccumulate and cause oxidative DNA damages in the brain tissue of zebrafish embryo (Danio rerio)[J]. NeuroToxicology, 2020, 77: 51-59. doi: 10.1016/j.neuro.2019.12.010
[44] KIM Y, JEONG J, LEE S, et al. Identification of adverse outcome pathway related to high-density polyethylene microplastics exposure: Caenorhabditis elegans transcription factor RNAi screening and zebrafish study[J]. Journal of Hazardous Materials, 2020, 388: 121725. doi: 10.1016/j.jhazmat.2019.121725
[45] LIU Y P, LU M X, ZHANG X W, et al. Shift of the microbial communities from exposed sandstone rocks to forest soils during pedogenesis[J]. International Biodeterioration & Biodegradation, 2019, 140: 21-28.
[46] PARENTI C C, GHILARDI A, DELLA TORRE C, et al. Evaluation of the infiltration of polystyrene nanobeads in zebrafish embryo tissues after short-term exposure and the related biochemical and behavioural effects[J]. Environmental Pollution, 2019, 254: 112947. doi: 10.1016/j.envpol.2019.07.115
[47] BRUN N R, van HAGE P, HUNTING E R, et al. Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish[J]. Communications Biology, 2019, 2(1): 1-9. doi: 10.1038/s42003-018-0242-0
[48] WAN Z Q, WANG C Y, ZHOU J J, et al. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish[J]. Chemosphere, 2019, 217: 646-658. doi: 10.1016/j.chemosphere.2018.11.070
[49] LeMOINE C M R, KELLEHER B M, LAGARDE R, et al. Transcriptional effects of polyethylene microplastics ingestion in developing zebrafish (Danio rerio)[J]. Environmental Pollution, 2018, 243: 591-600. doi: 10.1016/j.envpol.2018.08.084
[50] GU W Q, LIU S, CHEN L, et al. Single-cell RNA sequencing reveals size-dependent effects of polystyrene microplastics on immune and secretory cell populations from zebrafish intestines[J]. Environmental Science & Technology, 2020, 54(6): 3417-3427.
[51] LEI L L, WU S Y, LU S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 2018, 619/620: 1-8. doi: 10.1016/j.scitotenv.2017.11.103
[52] JIN Y X, XIA J Z, PAN Z H, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish[J]. Environmental Pollution, 2018, 235: 322-329. doi: 10.1016/j.envpol.2017.12.088
[53] QIAO R X, SHENG C, LU Y F, et al. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish[J]. Science of the Total Environment, 2019, 662: 246-253. doi: 10.1016/j.scitotenv.2019.01.245
[54] RAINIERI S, CONLLEDO N, LARSEN B K, et al. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio)[J]. Environmental Research, 2018, 162: 135-143. doi: 10.1016/j.envres.2017.12.019
[55] ONG K J, ZHAO X X, THISTLE M E, et al. Mechanistic insights into the effect of nanoparticles on zebrafish hatch[J]. Nanotoxicology, 2014, 8(3): 295-304. doi: 10.3109/17435390.2013.778345
[56] RANDLETT O, WEE C L, NAUMANN E A, et al. Whole-brain activity mapping onto a zebrafish brain atlas[J]. Nature Methods, 2015, 12(11): 1039-1046. doi: 10.1038/nmeth.3581
[57] WULLIMANN M F. Secondary neurogenesis and telencephalic organization in zebrafish and mice: A brief review[J]. Integrative Zoology, 2009, 4(1): 123-133. doi: 10.1111/j.1749-4877.2008.00140.x
[58] DEMIN K A, TARANOV A S, ILYIN N P, et al. Understanding neurobehavioral effects of acute and chronic stress in zebrafish[J]. Stress, 2021, 24(1): 1-18. doi: 10.1080/10253890.2020.1724948
[59] BHAGAT J, ZANG L Q, NISHIMURA N, et al. Zebrafish: An emerging model to study microplastic and nanoplastic toxicity[J]. The Science of the Total Environment, 2020, 728: 138707. doi: 10.1016/j.scitotenv.2020.138707
[60] DAYAL N, THAKUR M, PATIL P, et al. Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish (Danio rerio)[J]. Journal of Nanoparticle Research, 2016, 18(10): 291. doi: 10.1007/s11051-016-3549-0
[61] 武芳竹, 曾江宁, 徐晓群, 等. 海洋微塑料污染现状及其对鱼类的生态毒理效应[J]. 海洋学报, 2019, 41(2): 85-98. WU F Z, ZENG J N, XU X Q, et al. Status of marine microplastic pollution and its ecotoxicological effects on marine fish[J]. Haiyang Xuebao, 2019, 41(2): 85-98 (in Chinese).
[62] WANG R L, SONG B, WU J R, et al. Potential adverse effects of nanoparticles on the reproductive system[J]. International Journal of Nanomedicine, 2018, 13: 8487-8506. doi: 10.2147/IJN.S170723
[63] MA Y B, LU C J, JUNAID M, et al. Potential adverse outcome pathway (AOP) of silver nanoparticles mediated reproductive toxicity in zebrafish[J]. Chemosphere, 2018, 207: 320-328. doi: 10.1016/j.chemosphere.2018.05.019
[64] WANG P P, ZHAO Y. Plasticizer Exposure and Reproductive Health: Phthalates and Bisphenol A[M]//Zhang Y. Emerging Chemicals and Human Health. Singapore: Springer, 2019: 49-67.
[65] BAKIR A, ROWLAND S J, THOMPSON R C. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions[J]. Environmental Pollution, 2014, 185: 16-23. doi: 10.1016/j.envpol.2013.10.007
[66] CHEN X P, XU S S, TAN T F, et al. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures[J]. International Journal of Environmental Research and Public Health, 2014, 11(3): 3156-3168. doi: 10.3390/ijerph110303156
[67] BRITT K L, SAUNDERS P K, McPHERSON S J, et al. Estrogen actions on follicle formation and early follicle development[J]. Biology of Reproduction, 2004, 71(5): 1712-1723. doi: 10.1095/biolreprod.104.028175
[68] GUPTA R K, SINGH J M, LESLIE T C, et al. Di-(2-ethylhexyl) phthalate and mono-(2-ethylhexyl) phthalate inhibit growth and reduce estradiol levels of antral follicles in vitro[J]. Toxicology and Applied Pharmacology, 2010, 242(2): 224-230. doi: 10.1016/j.taap.2009.10.011
[69] ROCHA MONTEIRO P R, REIS-HENRIQUES M A, COIMBRA J. Polycyclic aromatic hydrocarbons inhibit in vitro ovarian steroidogenesis in the flounder (Platichthys flesus L. )[J]. Aquatic Toxicology, 2000, 48(4): 549-559. doi: 10.1016/S0166-445X(99)00055-7
[70] ARUKWE A, GOKSØYR A. Eggshell and egg yolk proteins in fish: Hepatic proteins for the next generation: Oogenetic, population, and evolutionary implications of endocrine disruption[J]. Comparative Hepatology, 2003, 2(1): 4. doi: 10.1186/1476-5926-2-4
[71] MARIN M G, MATOZZO V. Vitellogenin induction as a biomarker of exposure to estrogenic compounds in aquatic environments[J]. Marine Pollution Bulletin, 2004, 48(9/10): 835-839.
[72] SUMPTER J P, JOBLING S. Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment[J]. Environmental Health Perspectives, 1995, 103(Suppl 7): 173-178. doi: 10.1289/ehp.95103s7173
[73] LINDEN S K, SUTTON P, KARLSSON N G, et al. Mucins in the mucosal barrier to infection[J]. Mucosal Immunology, 2008, 1(3): 183-197. doi: 10.1038/mi.2008.5
[74] HWANG J, CHOI D, HAN S, et al. Potential toxicity of polystyrene microplastic particles[J]. Scientific Reports, 2020, 10(1): 1-12. doi: 10.1038/s41598-019-56847-4
[75] YUAN Y, SEPÚLVEDA M S, BI B L, et al. Acute polyethylene microplastic (PE-MPs) exposure activates the intestinal mucosal immune network pathway in adult zebrafish (Danio rerio)[J]. Chemosphere, 2023, 311: 137048. doi: 10.1016/j.chemosphere.2022.137048
[76] LEGRAND T P R A, WYNNE J W, WEYRICH L S, et al. A microbial sea of possibilities: Current knowledge and prospects for an improved understanding of the fish microbiome[J]. Reviews in Aquaculture, 2020, 12(2): 1101-1134. doi: 10.1111/raq.12375
[77] MIAO S Y, ZHAO C Z, ZHU J Y, et al. Dietary soybean meal affects intestinal homoeostasis by altering the microbiota, morphology and inflammatory cytokine gene expression in northern snakehead[J]. Scientific Reports, 2018, 8(1): 1-10.
[78] RAMOS M A, BATISTA S, PIRES M A, et al. Dietary probiotic supplementation improves growth and the intestinal morphology of Nile tilapia[J]. Animal, 2017, 11(8): 1259-1269. doi: 10.1017/S1751731116002792
[79] XU K H, ZHANG Y D, HUANG Y M, et al. Toxicological effects of microplastics and phenanthrene to zebrafish (Danio rerio)[J]. Science of the Total Environment, 2021, 757: 143730. doi: 10.1016/j.scitotenv.2020.143730
[80] SOLOMANDO A, CAPÓ X, ALOMAR C, et al. Long-term exposure to microplastics induces oxidative stress and a pro-inflammatory response in the gut of Sparus aurata Linnaeus, 1758[J]. Environmental Pollution, 2020, 266: 115295. doi: 10.1016/j.envpol.2020.115295
[81] TRESTRAIL C, NUGEGODA D, SHIMETA J. Invertebrate responses to microplastic ingestion: Reviewing the role of the antioxidant system[J]. Science of the Total Environment, 2020, 734: 138559. doi: 10.1016/j.scitotenv.2020.138559
[82] KAMINSKYY V O, ZHIVOTOVSKY B. Free radicals in cross talk between autophagy and apoptosis[J]. Antioxidants & Redox Signaling, 2014, 21(1): 86-102.
[83] REDZA-DUTORDOIR M, AVERILL-BATES D A. Activation of apoptosis signalling pathways by reactive oxygen species[J]. Biochimica et Biophysica Acta, 2016, 1863(12): 2977-2992. doi: 10.1016/j.bbamcr.2016.09.012
[84] BHABRA G, SOOD A, FISHER B, et al. Nanoparticles can cause DNA damage across a cellular barrier[J]. Nature Nanotechnology, 2009, 4(12): 876-883. doi: 10.1038/nnano.2009.313
[85] MAHMOUDI M, AZADMANESH K, SHOKRGOZAR M A, et al. Effect of nanoparticles on the cell life cycle[J]. Chemical Reviews, 2011, 111(5): 3407-3432. doi: 10.1021/cr1003166
[86] ZHANG J F, SHEN H, WANG X R, et al. Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus[J]. Chemosphere, 2004, 55(2): 167-174. doi: 10.1016/j.chemosphere.2003.10.048
[87] NIU Z G, XU W A, NA J, et al. How long-term exposure of environmentally relevant antibiotics may stimulate the growth of Prorocentrum lima: A probable positive factor for red tides[J]. Environmental Pollution, 2019, 255: 113149. doi: 10.1016/j.envpol.2019.113149
[88] BHAGAT J, INGOLE B S, SINGH N. Glutathione s-transferase, catalase, superoxide dismutase, glutathione peroxidase, and lipid peroxidation as biomarkers of oxidative stress in snails: A review[J]. Invertebrate Survival Journal, 2016, 13: 336-349.
[89] KIM J H, KANG Y J, KIM K I, et al. Toxic effects of nitrogenous compounds (ammonia, nitrite, and nitrate) on acute toxicity and antioxidant responses of juvenile olive flounder, Paralichthys olivaceus[J]. Environmental Toxicology and Pharmacology, 2019, 67: 73-78. doi: 10.1016/j.etap.2019.02.001
[90] KIM J H, KANG J C. Oxidative stress, neurotoxicity, and non-specific immune responses in juvenile red sea bream, Pagrus major, exposed to different waterborne selenium concentrations[J]. Chemosphere, 2015, 135: 46-52. doi: 10.1016/j.chemosphere.2015.03.062
[91] CHAUDIÈRE J, FERRARI-ILIOU R. Intracellular antioxidants: From chemical to biochemical mechanisms[J]. Food and Chemical Toxicology, 1999, 37(9/10): 949-962.
[92] UMAMAHESWARI S, PRIYADARSHINEE S, BHATTACHARJEE M, et al. Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio)[J]. Chemosphere, 2021, 281: 128592. doi: 10.1016/j.chemosphere.2020.128592
[93] CHOI J S, JUNG Y J, HONG N H, et al. Toxicological effects of irregularly shaped and spherical microplastics in a marine teleost, the sheepshead minnow (Cyprinodon variegatus)[J]. Marine Pollution Bulletin, 2018, 129(1): 231-240. doi: 10.1016/j.marpolbul.2018.02.039
[94] LU K, QIAO R X, AN H, et al. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio)[J]. Chemosphere, 2018, 202: 514-520. doi: 10.1016/j.chemosphere.2018.03.145
[95] FRÖHLICH E. Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles[J]. Current Drug Metabolism, 2013, 14(9): 976-988. doi: 10.2174/1389200211314090004
[96] UMAMAHESWARI S, PRIYADARSHINEE S, KADIRVELU K, et al. Polystyrene microplastics induce apoptosis via ROS-mediated p53 signaling pathway in zebrafish[J]. Chemico-Biological Interactions, 2021, 345: 109550. doi: 10.1016/j.cbi.2021.109550
[97] ITO F, SONO Y, ITO T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation[J]. Antioxidants (Basel, Switzerland), 2019, 8(3): 72.
[98] BARBOZA L G A, LOPES C, OLIVEIRA P, et al. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure[J]. The Science of the Total Environment, 2020, 717: 134625. doi: 10.1016/j.scitotenv.2019.134625
[99] ALOMAR C, SUREDA A, CAPÓ X, et al. Microplastic ingestion by Mullus surmuletus Linnaeus, 1758 fish and its potential for causing oxidative stress[J]. Environmental Research, 2017, 159: 135-142. doi: 10.1016/j.envres.2017.07.043
[100] PEI X, HENG X, CHU W H. Polystyrene nano/microplastics induce microbiota dysbiosis, oxidative damage, and innate immune disruption in zebrafish[J]. Microbial Pathogenesis, 2022, 163: 105387. doi: 10.1016/j.micpath.2021.105387
[101] LU L, WAN Z Q, LUO T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice[J]. Science of the Total Environment, 2018, 631/632: 449-458. doi: 10.1016/j.scitotenv.2018.03.051
[102] HIRT N, BODY-MALAPEL M. Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature[J]. Particle and Fibre Toxicology, 2020, 17(1): 57. doi: 10.1186/s12989-020-00387-7
[103] ZHANG Y A, SALINAS I, ORIOL SUNYER J. Recent findings on the structure and function of teleost IgT[J]. Fish & Shellfish Immunology, 2011, 31(5): 627-634.
[104] PETERSEN C, BELL R, KA K, et al. T cell–mediated regulation of the microbiota protects against obesity[J]. Science, 2019, 365(6451): 9351. doi: 10.1126/science.aat9351
[105] PABST O, SLACK E. IgA and the intestinal microbiota: The importance of being specific[J]. Mucosal Immunology, 2020, 13(1): 12-21. doi: 10.1038/s41385-019-0227-4
[106] XU Z, TAKIZAWA F, CASADEI E, et al. Specialization of mucosal immunoglobulins in pathogen control and microbiota homeostasis occurred early in vertebrate evolution[J]. Science Immunology, 2020, 5(44): 3254. doi: 10.1126/sciimmunol.aay3254
[107] SAURABH S, SAHOO P K. Lysozyme: An important defence molecule of fish innate immune system[J]. Aquaculture Research, 2008, 39(3): 223-239. doi: 10.1111/j.1365-2109.2007.01883.x
[108] ZHANG L J, MAMILLAPALLI R, HABATA S, et al. Myometrial-derived CXCL12 promotes lipopolysaccharide induced preterm labour by regulating macrophage migration, polarization and function in mice[J]. Journal of Cellular and Molecular Medicine, 2022, 26(9): 2566-2578. doi: 10.1111/jcmm.17252
[109] LEE A J, KANDIAH N, KARIMI K, et al. Interleukin-15 is required for maximal lipopolysaccharide-induced abortion[J]. Journal of Leukocyte Biology, 2013, 93(6): 905-912. doi: 10.1189/jlb.0912442
[110] BARSIG J, KÜSTERS S, VOGT K, et al. Lipopolysaccharide-induced interleukin-10 in mice: Role of endogenous tumor necrosis factor-alpha[J]. European Journal of Immunology, 1995, 25(10): 2888-2893. doi: 10.1002/eji.1830251027
[111] BARAN A, KÖKTÜRK M, ATAMANALP M, et al. Determination of developmental toxicity of zebrafish exposed to propyl gallate dosed lower than ADI (Acceptable Daily Intake)[J]. Regulatory Toxicology and Pharmacology, 2018, 94: 16-21. doi: 10.1016/j.yrtph.2017.12.027
[112] ÇOMAKLI S, KÖKTÜRK M, TOPAL A, et al. Immunofluorescence/fluorescence assessment of brain-derived neurotrophic factor, c-Fos activation, and apoptosis in the brain of zebrafish (Danio rerio) larvae exposed to glufosinate[J]. NeuroToxicology, 2018, 69: 60-67. doi: 10.1016/j.neuro.2018.09.003
[113] ZHAI X W, WANG L, XU C, et al. Triptolide preserves glomerular barrier function via the inhibition of p53-mediated increase of GADD45B[J]. Archives of Biochemistry and Biophysics, 2019, 671: 210-217. doi: 10.1016/j.abb.2019.07.012
[114] PARK S, LEE J Y, PARK H, et al. Bifenthrin induces developmental immunotoxicity and vascular malformation during zebrafish embryogenesis[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2020, 228: 108671.
[115] SARMAH S, MARRS J A. Zebrafish as a vertebrate model system to evaluate effects of environmental toxicants on cardiac development and function[J]. International Journal of Molecular Sciences, 2016, 17(12): 2123. doi: 10.3390/ijms17122123
[116] HUMAYUN A, JR FORNACE A J. GADD45 in stress signaling, cell cycle control, and apoptosis[J]. Advances in Experimental , 2022, 1360: 1-22.