[1] SARDON H, DOVE A P. Plastics recycling with a difference[J]. Science, 2018, 360(6387): 380-381. doi: 10.1126/science.aat4997
[2] JAMBECK J R, GEYER R, WILCOX C, et al. Marine pollution. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223): 768-771. doi: 10.1126/science.1260352
[3] GIBB B C. Plastics are forever[J]. Nature Chemistry, 2019, 11(5): 394-395. doi: 10.1038/s41557-019-0260-7
[4] MIN K, CUIFFI J D, MATHERS R T. Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure[J]. Nature Communications, 2020, 11: 727. doi: 10.1038/s41467-020-14538-z
[5] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. doi: 10.1126/sciadv.1700782
[6] MU J L, ZHANG S F, QU L, et al. Microplastics abundance and characteristics in surface waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea[J]. Marine Pollution Bulletin, 2019, 143: 58-65. doi: 10.1016/j.marpolbul.2019.04.023
[7] SCHWAB F, ROTHEN-RUTISHAUSER B, PETRI-FINK A. When plants and plastic interact[J]. Nature Nanotechnology, 2020, 15(9): 729-730. doi: 10.1038/s41565-020-0762-x
[8] PEEKEN I, PRIMPKE S, BEYER B, et al. Arctic sea ice is an important temporal sink and means of transport for microplastic[J]. Nature Communications, 2018, 9: 1505. doi: 10.1038/s41467-018-03825-5
[9] ISOBE A, IWASAKI S, UCHIDA K, et al. Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066[J]. Nature Communications, 2019, 10: 417. doi: 10.1038/s41467-019-08316-9
[10] LEBRETON L C M, van der ZWET J, DAMSTEEG J W, et al. River plastic emissions to the world’s oceans[J]. Nature Communications, 2017, 8: 15611. doi: 10.1038/ncomms15611
[11] GARCIA J M, ROBERTSON M L. The future of plastics recycling[J]. Science, 2017, 358(6365): 870-872. doi: 10.1126/science.aaq0324
[12] LAU W W Y, SHIRAN Y, BAILEY R M, et al. Evaluating scenarios toward zero plastic pollution[J]. Science, 2020, 369(6510): 1455-1461. doi: 10.1126/science.aba9475
[13] ZHENG J J, SUH S. Strategies to reduce the global carbon footprint of plastics[J]. Nature Climate Change, 2019, 9(5): 374-378. doi: 10.1038/s41558-019-0459-z
[14] YADAV T P, AWASTHI K. Carbon nanomaterials: Fullerene to graphene[J]. Transactions of the Indian National Academy of Engineering, 2022, 7(3): 715-737. doi: 10.1007/s41403-022-00348-w
[15] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896
[16] LUONG D X, BETS K V, ALI ALGOZEEB W, et al. Gram-scale bottom-up flash graphene synthesis[J]. Nature, 2020, 577(7792): 647-651. doi: 10.1038/s41586-020-1938-0
[17] HOU Q D, ZHEN M N, QIAN H L, et al. Upcycling and catalytic degradation of plastic wastes[J]. Cell Reports Physical Science, 2021, 2(8): 100514. doi: 10.1016/j.xcrp.2021.100514
[18] NOVOSELOV K S, FAL′KO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200. doi: 10.1038/nature11458
[19] SUN Z X, FANG S Y, HU Y H. 3D graphene materials: From understanding to design and synthesis control[J]. Chemical Reviews, 2020, 120(18): 10336-10453. doi: 10.1021/acs.chemrev.0c00083
[20] SUN L Z, YUAN G W, GAO L B, et al. Chemical vapour deposition[J]. Nature Reviews Methods Primers, 2021, 1: 5. doi: 10.1038/s43586-020-00005-y
[21] RUAN G D, SUN Z Z, PENG Z W, et al. Growth of graphene from food, insects, and waste[J]. ACS Nano, 2011, 5(9): 7601-7607. doi: 10.1021/nn202625c
[22] YOU Y, MAYYAS M, XU S, et al. Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method[J]. Green Chemistry, 2017, 19(23): 5599-5607. doi: 10.1039/C7GC02523H
[23] GONG J A, LIU J E, WEN X, et al. Upcycling waste polypropylene into graphene flakes on organically modified montmorillonite[J]. Industrial & Engineering Chemistry Research, 2014, 53(11): 4173-4181.
[24] NGUYEN D D, HSIEH P Y, TSAI M T, et al. Hollow few-layer graphene-based structures from parafilm waste for flexible transparent supercapacitors and oil spill cleanup[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40645-40654.
[25] WU T R, DING G Q, SHEN H L, et al. Triggering the continuous growth of graphene toward millimeter-sized grains[J]. Advanced Functional Materials, 2013, 23(2): 198-203. doi: 10.1002/adfm.201201577
[26] WANG Y L, HU P, YANG J, et al. C—H bond activation in light alkanes: A theoretical perspective[J]. Chemical Society Reviews, 2021, 50(7): 4299-4358. doi: 10.1039/D0CS01262A
[27] LIN L, DENG B, SUN J Y, et al. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene[J]. Chemical Reviews, 2018, 118(18): 9281-9343. doi: 10.1021/acs.chemrev.8b00325
[28] SHU H B, TAO X M, DING F. What are the active carbon species during graphene chemical vapor deposition growth?[J]. Nanoscale, 2015, 7(5): 1627-1634. doi: 10.1039/C4NR05590J
[29] CHEN S S, CAI W W, PINER R D, et al. Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils[J]. Nano Letters, 2011, 11(9): 3519-3525. doi: 10.1021/nl201699j
[30] LIAN Y M, UTETIWABO W, ZHOU Y D, et al. From upcycled waste polyethylene plastic to graphene/mesoporous carbon for high-voltage supercapacitors[J]. Journal of Colloid and Interface Science, 2019, 557: 55-64. doi: 10.1016/j.jcis.2019.09.003
[31] PANDEY S, KARAKOTI M, SURANA K, et al. Graphene nanosheets derived from plastic waste for the application of DSSCs and supercapacitors[J]. Scientific Reports, 2021, 11: 3916. doi: 10.1038/s41598-021-83483-8
[32] XU Y X, LIN Z Y, ZHONG X, et al. Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nature Communications, 2014, 5: 4554. doi: 10.1038/ncomms5554
[33] WU D Y, ZHU C, SHI Y T, et al. Biomass-derived multilayer-graphene-encapsulated cobalt nanoparticles as efficient electrocatalyst for versatile renewable energy applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1137-1145.
[34] XIA J S, ZHANG N, CHONG S K, et al. Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor[J]. Green Chemistry, 2018, 20(3): 694-700. doi: 10.1039/C7GC03426A
[35] MAHMOUDIAN L, RASHIDI A, DEHGHANI H, et al. Single-step scalable synthesis of three-dimensional highly porous graphene with favorable methane adsorption[J]. Chemical Engineering Journal, 2016, 304: 784-792. doi: 10.1016/j.cej.2016.07.015
[36] HE Y M, CHEN W J, LI X D, et al. Freestanding three-dimensional graphene/MnO2 composite networks As ultralight and flexible supercapacitor electrodes[J]. ACS Nano, 2013, 7(1): 174-182. doi: 10.1021/nn304833s
[37] WANG X B, ZHANG Y J, ZHI C Y, et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors[J]. Nature Communications, 2013, 4: 2905. doi: 10.1038/ncomms3905
[38] ZHENG X J, WU J, CAO X C, et al. N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes[J]. Applied Catalysis B: Environmental, 2019, 241: 442-451. doi: 10.1016/j.apcatb.2018.09.054
[39] JIANG X F, WANG X B, DAI P C, et al. High-throughput fabrication of strutted graphene by ammonium-assisted chemical blowing for high-performance supercapacitors[J]. Nano Energy, 2015, 16: 81-90. doi: 10.1016/j.nanoen.2015.06.008
[40] YOON J C, LEE J S, KIM S I, et al. Three-dimensional graphene nano-networks with high quality and mass production capability via precursor-assisted chemical vapor deposition[J]. Scientific Reports, 2013, 3: 1788. doi: 10.1038/srep01788
[41] LI X S, MAGNUSON C W, VENUGOPAL A, et al. Graphene films with large domain size by a two-step chemical vapor deposition process[J]. Nano Letters, 2010, 10(11): 4328-4334. doi: 10.1021/nl101629g
[42] YU Q K, JAUREGUI L A, WU W, et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 443-449. doi: 10.1038/nmat3010
[43] SHARMA S, KALITA G, HIRANO R, et al. Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition[J]. Carbon, 2014, 72: 66-73. doi: 10.1016/j.carbon.2014.01.051
[44] CUI L F, WANG X P, CHEN N, et al. Trash to treasure: Converting plastic waste into a useful graphene foil[J]. Nanoscale, 2017, 9(26): 9089-9094. doi: 10.1039/C7NR03580B
[45] FROMM O, HECKMANN A, RODEHORST U C, et al. Carbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance[J]. Carbon, 2018, 128: 147-163. doi: 10.1016/j.carbon.2017.11.065
[46] LIN J, PENG Z W, LIU Y Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 2014, 5: 5714. doi: 10.1038/ncomms6714
[47] YE R Q, JAMES D K, TOUR J M. Laser-induced graphene: From discovery to translation[J]. Advanced Materials, 2019, 31(1): 1803621. doi: 10.1002/adma.201803621
[48] STANFORD M G, LI J T, CHEN Y D, et al. Self-sterilizing laser-induced graphene bacterial air filter[J]. ACS Nano, 2019, 13(10): 11912-11920. doi: 10.1021/acsnano.9b05983
[49] ZHANG J B, ZHANG C H, SHA J W, et al. Efficient water-splitting electrodes based on laser-induced graphene[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 26840-26847.
[50] SONG W X, ZHU J X, GAN B H, et al. Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser-induced graphene[J]. Small, 2018, 14(1): 1702249. doi: 10.1002/smll.201702249
[51] CLERICI F, FONTANA M, BIANCO S, et al. in situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10459-10465.
[52] ZHANG Z C, SONG M M, HAO J X, et al. Visible light laser-induced graphene from phenolic resin: A new approach for directly writing graphene-based electrochemical devices on various substrates[J]. Carbon, 2018, 127: 287-296. doi: 10.1016/j.carbon.2017.11.014
[53] TAO L Q, TIAN H, LIU Y, et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene[J]. Nature Communications, 2017, 8: 14579. doi: 10.1038/ncomms14579
[54] FENZL C, NAYAK P, HIRSCH T, et al. Laser-scribed graphene electrodes for aptamer-based biosensing[J]. ACS Sensors, 2017, 2(5): 616-620. doi: 10.1021/acssensors.7b00066
[55] NAYAK P, KURRA N, XIA C, et al. Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications[J]. Advanced Electronic Materials, 2016, 2(10): 1600185. doi: 10.1002/aelm.201600185
[56] SINGH S P, LI Y L, BE’ER A, et al. Laser-induced graphene layers and electrodes prevents microbial fouling and exerts antimicrobial action[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 18238-18247.
[57] TAN K W, JUNG B, WERNER J, et al. Transient laser heating induced hierarchical porous structures from block copolymer–directed self-assembly[J]. Science, 2015, 349: 54-58. doi: 10.1126/science.aab0492
[58] CHYAN Y, YE R Q, LI Y L, et al. Laser-induced graphene by multiple lasing: Toward electronics on cloth, paper, and food[J]. ACS Nano, 2018, 12(3): 2176-2183. doi: 10.1021/acsnano.7b08539
[59] ALGOZEEB W A, SAVAS P E, LUONG D X, et al. Flash graphene from plastic waste[J]. ACS Nano, 2020, 14(11): 15595-15604. doi: 10.1021/acsnano.0c06328
[60] BECKHAM J L, LI J T, STANFORD M G, et al. High-resolution laser-induced graphene from photoresist[J]. ACS Nano, 2021, 15(5): 8976-8983. doi: 10.1021/acsnano.1c01843
[61] LI J T, STANFORD M G, CHEN W Y, et al. Laminated laser-induced graphene composites[J]. ACS Nano, 2020, 14(7): 7911-7919. doi: 10.1021/acsnano.0c02835
[62] WYSS K M, de KLEINE R D, COUVREUR R L, et al. Upcycling end-of-life vehicle waste plastic into flash graphene[J]. Communications Engineering, 2022, 1: 3. doi: 10.1038/s44172-022-00006-7
[63] WYSS K M, BECKHAM J L, CHEN W Y, et al. Converting plastic waste pyrolysis ash into flash graphene[J]. Carbon, 2021, 174: 430-438. doi: 10.1016/j.carbon.2020.12.063
[64] STANFORD M G, BETS K V, LUONG D X, et al. Flash graphene morphologies[J]. ACS Nano, 2020, 14(10): 13691-13699. doi: 10.1021/acsnano.0c05900
[65] CHEN W Y, LI J T, WANG Z, et al. Ultrafast and controllable phase evolution by flash joule heating[J]. ACS Nano, 2021, 15(7): 11158-11167. doi: 10.1021/acsnano.1c03536
[66] WYSS K M, CHEN W Y, BECKHAM J L, et al. Holey and wrinkled flash graphene from mixed plastic waste[J]. ACS Nano, 2022, 16(5): 7804-7815. doi: 10.1021/acsnano.2c00379
[67] BARBHUIYA N H, KUMAR A, SINGH A, et al. The future of flash graphene for the sustainable management of solid waste[J]. ACS Nano, 2021, 15(10): 15461-15470. doi: 10.1021/acsnano.1c07571
[68] ZHANG Y S, ZHU H L, YAO D D, et al. Thermo-chemical conversion of carbonaceous wastes for CNT and hydrogen production: A review[J]. Sustainable Energy & Fuels, 2021, 5(17): 4173-4208.
[69] ZHANG R F, ZHANG Y Y, WEI F. Horizontally aligned carbon nanotube arrays: Growth mechanism, controlled synthesis, characterization, properties and applications[J]. Chemical Society Reviews, 2017, 46(12): 3661-3715. doi: 10.1039/C7CS00104E
[70] KUKOVITSKII E F, CHERNOZATONSKII L A, L'VOV S G, et al. Carbon nanotubes of polyethylene[J]. Chemical Physics Letters, 1997, 266(3/4): 323-328.
[71] ZHANG P, LIANG C, WU M D, et al. High-efficient microwave plasma discharging initiated conversion of waste plastics into hydrogen and carbon nanotubes[J]. Energy Conversion and Management, 2022, 268: 116017. doi: 10.1016/j.enconman.2022.116017
[72] DAI L L, KARAKAS O, CHENG Y L, et al. A review on carbon materials production from plastic wastes[J]. Chemical Engineering Journal, 2023, 453: 139725. doi: 10.1016/j.cej.2022.139725
[73] PENG Y J, WANG Y P, KE L Y, et al. A review on catalytic pyrolysis of plastic wastes to high-value products[J]. Energy Conversion and Management, 2022, 254: 115243. doi: 10.1016/j.enconman.2022.115243
[74] JIE X Y, LI W S, SLOCOMBE D, et al. Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons[J]. Nature Catalysis, 2020, 3(11): 902-912. doi: 10.1038/s41929-020-00518-5
[75] JOSEPH BERKMANS A, JAGANNATHAM M, PRIYANKA S, et al. Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method[J]. Waste Management, 2014, 34(11): 2139-2145. doi: 10.1016/j.wasman.2014.07.004
[76] LIU B L, REN W C, GAO L B, et al. Metal-catalyst-free growth of single-walled carbon nanotubes[J]. Journal of the American Chemical Society, 2009, 131(6): 2082-2083. doi: 10.1021/ja8093907
[77] KANG L X, HU Y E, LIU L L, et al. Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts[J]. Nano Letters, 2015, 15(1): 403-409. doi: 10.1021/nl5037325
[78] YAO Y G, FENG C Q, ZHANG J, et al. “cloning” of single-walled carbon nanotubes via open-end growth mechanism[J]. Nano Letters, 2009, 9(4): 1673-1677. doi: 10.1021/nl900207v
[79] POUDEL Y R, LI W Z. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: A review[J]. Materials Today Physics, 2018, 7: 7-34. doi: 10.1016/j.mtphys.2018.10.002
[80] YAGLIOGLU O, CAO A Y, HART A J, et al. Wide range control of microstructure and mechanical properties of carbon nanotube forests: A comparison between fixed and floating catalyst CVD techniques[J]. Advanced Functional Materials, 2012, 22(23): 5028-5037. doi: 10.1002/adfm.201200852
[81] TANG T, CHEN X C, MENG X Y, et al. Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene[J]. Angewandte Chemie International Edition, 2005, 44(10): 1517-1520. doi: 10.1002/anie.200461506
[82] GUL O T. Decoupling the catalyst reduction and annealing for suppressing Ostwald ripening in carbon nanotube growth[J]. Applied Physics A, 2021, 127(10): 1-11.
[83] AZARA A, BELBESSAI S, ABATZOGLOU N. A review of filamentous carbon nanomaterial synthesis via catalytic conversion of waste plastic pyrolysis products[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107049. doi: 10.1016/j.jece.2021.107049
[84] OSTRIKOV K K, MEHDIPOUR H. Thin single-walled carbon nanotubes with narrow chirality distribution: Constructive interplay of plasma and gibbs–thomson effects[J]. ACS Nano, 2011, 5(10): 8372-8382. doi: 10.1021/nn2030989
[85] GHORANNEVIS Z, KATO T, KANEKO T, et al. Narrow-chirality distributed single-walled carbon nanotube growth from nonmagnetic catalyst[J]. Journal of the American Chemical Society, 2010, 132(28): 9570-9572. doi: 10.1021/ja103362j
[86] NEYTS E C, OSTRIKOV K K, SUNKARA M K, et al. Plasma catalysis: Synergistic effects at the nanoscale[J]. Chemical Reviews, 2015, 115(24): 13408-13446. doi: 10.1021/acs.chemrev.5b00362