[1] HUANG C C, WANG X L, YANG H, et al. Satellite data regarding the eutrophication response to human activities in the Plateau Lake Dianchi in China from 1974 to 2009[J]. Science of the Total Environment, 2014, 485/486: 1-11. doi: 10.1016/j.scitotenv.2014.03.031
[2] O’NEIL J M, DAVIS T W, BURFORD M A, et al. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change[J]. Harmful Algae, 2012, 14: 313-334. doi: 10.1016/j.hal.2011.10.027
[3] 李昂臻, 陈思旭, 李海燕, 等. 北方某省会城市主要水库富营养化程度、特征和防治对策[J]. 环境化学, 2020, 39(9): 2529-2539. doi: 10.7524/j.issn.0254-6108.2020040902 LI A Z, CHEN S X, LI H Y, et al. Characteristics and evaluation of eutrophication in major reservoirs of a northern city in China[J]. Environmental Chemistry, 2020, 39(9): 2529-2539 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020040902
[4] SARAF S R, FRENKEL A, HARKE M J, et al. Effects of Microcystis on development of early life stage Japanese medaka (Oryzias latipes): Comparative toxicity of natural blooms, cultured Microcystis and microcystin-LR[J]. Aquatic Toxicology, 2018, 194: 18-26. doi: 10.1016/j.aquatox.2017.10.026
[5] SUN R, SUN P F, ZHANG J H, et al. Microorganisms-based methods for harmful algal blooms control: A review[J]. Bioresource Technology, 2018, 248: 12-20. doi: 10.1016/j.biortech.2017.07.175
[6] ZHOU S Q, SHAO Y S, GAO N Y, et al. Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis aeruginosa[J]. Science of the Total Environment, 2013, 463/464: 111-119. doi: 10.1016/j.scitotenv.2013.05.064
[7] 张小磊, 苍岩, 宋伟, 等. 二氧化氯预氧化含藻水过程中副产物的生成规律[J]. 环境化学, 2019, 38(2): 306-316. doi: 10.7524/j.issn.0254-6108.2018040203 ZHANG X L, CANG Y, SONG W, et al. By-product formation in algae-containing water pre-oxidized by chlorine dioxide[J]. Environmental Chemistry, 2019, 38(2): 306-316 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018040203
[8] RAJASEKHAR P, FAN L H, NGUYEN T, et al. Impact of sonication at 20 kHz on Microcystis aeruginosa, Anabaena circinalis and Chlorella sp[J]. Water Research, 2012, 46(5): 1473-1481. doi: 10.1016/j.watres.2011.11.017
[9] LIN Z, XU Y F, ZHEN Z, et al. Application and reactivation of magnetic nanoparticles in Microcystis aeruginosa harvesting[J]. Bioresource Technology, 2015, 190: 82-88. doi: 10.1016/j.biortech.2015.04.068
[10] PARK J, SON Y, LEE W H. Variation of efficiencies and limits of ultrasonication for practical algal bloom control in fields[J]. Ultrasonics Sonochemistry, 2019, 55: 8-17. doi: 10.1016/j.ultsonch.2019.03.007
[11] OU H S, GAO N Y, DENG Y, et al. Immediate and long-term impacts of UV-C irradiation on photosynthetic capacity, survival and microcystin-LR release risk of Microcystis aeruginosa[J]. Water Research, 2012, 46(4): 1241-1250. doi: 10.1016/j.watres.2011.12.025
[12] JIA P L, ZHOU Y P, ZHANG X F, et al. Cyanobacterium removal and control of algal organic matter (AOM) release by UV/H2O2 pre-oxidation enhanced Fe(II) coagulation[J]. Water Research, 2018, 131: 122-130. doi: 10.1016/j.watres.2017.12.020
[13] WAN Y, XIE P C, WANG Z P, et al. Comparative study on the pretreatment of algae-laden water by UV/persulfate, UV/chlorine, and UV/H2O2: Variation of characteristics and alleviation of ultrafiltration membrane fouling[J]. Water Research, 2019, 158: 213-226. doi: 10.1016/j.watres.2019.04.034
[14] QIN H J, ZHANG Z Y, LIU H Q, et al. Fenced cultivation of water hyacinth for cyanobacterial bloom control[J]. Environmental Science and Pollution Research, 2016, 23(17): 17742-17752. doi: 10.1007/s11356-016-6799-6
[15] ZHANG H L, CHEN A W, LI J L, et al. Control of Microcystis (Cyanobacteria) using the fruit of Macleaya cordata: From laboratory experiment to in situ field test[J]. Phycologia, 2017, 56(4): 382-389. doi: 10.2216/16-87.1
[16] ZENG G M, ZHANG R, LIANG D, et al. Comparison of the advantages and disadvantages of algae removal technology and its development status[J]. Water, 2023, 15(6): 1104 doi: 10.3390/w15061104
[17] GAO X Y, MENG X C. Photocatalysis for heavy metal treatment: A review[J]. Processes, 2021, 9(10): 1729. doi: 10.3390/pr9101729
[18] PRIYA A, SENTHIL R A, SELVI A, et al. A study of photocatalytic and photoelectrochemical activity of as-synthesized WO3/g-C3N4 composite photocatalysts for AO7 degradation[J]. Materials Science for Energy Technologies, 2020, 3: 43-50. doi: 10.1016/j.mset.2019.09.013
[19] QIN K N, ZHAO Q L, YU H, et al. A review of bismuth-based photocatalysts for antibiotic degradation: Insight into the photocatalytic degradation performance, pathways and relevant mechanisms[J]. Environmental Research, 2021, 199: 111360. doi: 10.1016/j.envres.2021.111360
[20] YU M L, WANG J J, TANG L, et al. Intimate coupling of photocatalysis and biodegradation for wastewater treatment: Mechanisms, recent advances and environmental applications[J]. Water Research, 2020, 175: 115673. doi: 10.1016/j.watres.2020.115673
[21] SUN S Q, TANG Q X, XU H, et al. A comprehensive review on the photocatalytic inactivation of Microcystis aeruginosa: Performance, development, and mechanisms[J]. Chemosphere, 2023, 312: 137239. doi: 10.1016/j.chemosphere.2022.137239
[22] YANG Y, CHEN H, LU J F. Inactivation of algae by visible-light-driven modified photocatalysts: A review[J]. Science of the Total Environment, 2023, 858: 159640. doi: 10.1016/j.scitotenv.2022.159640
[23] XU D Y, LI G, DONG Y L, et al. Photocatalytic O2 activation enhancement and algae inactivation mechanism of BiO2− x/Bi3NbO7 van der Waals heterojunction[J]. Applied Catalysis B: Environmental, 2022, 312: 121402. doi: 10.1016/j.apcatb.2022.121402
[24] WANG X, WANG X J, ZHAO J F, et al. Solar light-driven photocatalytic destruction of cyanobacteria by F-Ce-TiO2/expanded perlite floating composites[J]. Chemical Engineering Journal, 2017, 320: 253-263. doi: 10.1016/j.cej.2017.03.062
[25] GU N, GAO J L, WANG K T, et al. Microcystis aeruginosa inhibition by Zn-Fe-LDHs as photocatalyst under visible light[J]. Journal of the Institute of Chemical Engineers, 2016, 64: 189-195.
[26] LI P N, WANG L C, LIU H, et al. Facile sol-gel foaming synthesized nano foam Bi2Mo3O12 as novel photocatalysts for Microcystis aeruginosa treatment[J]. Materials Research Bulletin, 2018, 107: 8-13. doi: 10.1016/j.materresbull.2018.07.008
[27] ZHOU Q, YIN H B, WANG A L, et al. Preparation of hollow B-SiO2@TiO2 composites and their photocatalytic performances for degradation of ammonia-nitrogen and green algae in aqueous solution[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2535-2543. doi: 10.1016/j.cjche.2019.01.036
[28] WANG X, WANG X J, ZHAO J F, et al. Adsorption-photocatalysis functional expanded graphite C/C composite for in situ photocatalytic inactivation of Microcystis aeruginosa[J]. Chemical Engineering Journal, 2018, 341: 516-525. doi: 10.1016/j.cej.2018.02.054
[29] WANG X, WANG X J, ZHAO J F, et al. Efficient visible light-driven in situ photocatalytic destruction of harmful alga by worm-like N, P co-doped TiO2/expanded graphite carbon layer (NPT-EGC) floating composites[J]. Catalysis Science & Technology, 2017, 7(11): 2335-2346.
[30] WANG X, WANG X J, ZHAO J F, et al. Surface modified TiO2 floating photocatalyst with PDDA for efficient adsorption and photocatalytic inactivation of Microcystis aeruginosa[J]. Water Research, 2018, 131: 320-333. doi: 10.1016/j.watres.2017.12.062
[31] FAN G D, YOU Y F, WANG B, et al. Inactivation of harmful cyanobacteria by Ag/AgCl@ZIF-8 coating under visible light: Efficiency and its mechanisms[J]. Applied Catalysis B: Environmental, 2019, 256: 117866. doi: 10.1016/j.apcatb.2019.117866
[32] FAN G D, ZHOU J J, ZHENG X M, et al. Fast photocatalytic inactivation of Microcystis aeruginosa by metal-organic frameworks under visible light[J]. Chemosphere, 2020, 239: 124721. doi: 10.1016/j.chemosphere.2019.124721
[33] FAN G D, HONG L, LUO J, et al. Photocatalytic inactivation of harmful algae and degradation of cyanotoxins microcystin-LR using GO-based Z-scheme nanocatalysts under visible light[J]. Chemical Engineering Journal, 2020, 392: 123767. doi: 10.1016/j.cej.2019.123767
[34] FAN G D, CHEN Z, HONG L, et al. Simultaneous removal of harmful algal cells and toxins by a Ag2CO3-N: GO photocatalyst coating under visible light[J]. Science of the Total Environment, 2020, 741: 140341. doi: 10.1016/j.scitotenv.2020.140341
[35] GU N, MENG X Y, GAO J L, et al. SnO2-montmorillonite composite for removal and inhibition Microcystis aeruginosa assisted by UV-light[J]. Progress in Natural Science: Materials International, 2018, 28(3): 281-287. doi: 10.1016/j.pnsc.2018.04.010
[36] FAN G D, DU B H, ZHOU J J, et al. Stable Ag2O/g-C3N4 p-n heterojunction photocatalysts for efficient inactivation of harmful algae under visible light[J]. Applied Catalysis B: Environmental, 2020, 265: 118610. doi: 10.1016/j.apcatb.2020.118610
[37] ZHOU L, CAI M, ZHANG X, et al. In-situ nitrogen-doped black TiO2 with enhanced visible-light-driven photocatalytic inactivation of Microcystis aeruginosa cells: Synthesization, performance and mechanism[J]. Applied Catalysis B: Environmental, 2020, 272: 119019. doi: 10.1016/j.apcatb.2020.119019
[38] TU X M, KE S H, LUO S H, et al. Self-supporting rGO/BiOBr composite on loofah-sponge as a floating monolithic photocatalyst for efficient Microcystis aeruginosa inactivation[J]. Separation and Purification Technology, 2021, 275: 119226. doi: 10.1016/j.seppur.2021.119226
[39] JIN Y, ZHANG S S, XU H Z, et al. Application of N-TiO2 for visible-light photocatalytic degradation of Cylindrospermopsis raciborskii— More difficult than that for photodegradation of Microcystis aeruginosa?[J]. Environmental Pollution, 2019, 245: 642-650. doi: 10.1016/j.envpol.2018.11.056
[40] SONG J K, WANG X J, MA J X, et al. Visible-light-driven in situ inactivation of Microcystis aeruginosa with the use of floating g-C3N4 heterojunction photocatalyst: Performance, mechanisms and implications[J]. Applied Catalysis B: Environmental, 2018, 226: 83-92. doi: 10.1016/j.apcatb.2017.12.034
[41] SONG J K, WANG X J, MA J X, et al. Removal of Microcystis aeruginosa and Microcystin-LR using a graphitic-C3N4/TiO2 floating photocatalyst under visible light irradiation[J]. Chemical Engineering Journal, 2018, 348: 380-388. doi: 10.1016/j.cej.2018.04.182
[42] PINHO L X, AZEVEDO J, BRITO Â, et al. Effect of TiO2 photocatalysis on the destruction of Microcystis aeruginosa cells and degradation of cyanotoxins microcystin-LR and cylindrospermopsin[J]. Chemical Engineering Journal, 2015, 268: 144-152. doi: 10.1016/j.cej.2014.12.111
[43] QI J, LAN H C, LIU R P, et al. Efficient Microcystis aeruginosa removal by moderate photocatalysis-enhanced coagulation with magnetic Zn-doped Fe3O4 particles[J]. Water Research, 2020, 171: 115448. doi: 10.1016/j.watres.2019.115448
[44] DIAO Z H, PU S Y, QIAN W, et al. Photocatalytic removal of phenanthrene and algae by a novel Ca-Ag3PO4 composite under visible light: Reactivity and coexisting effect[J]. Chemosphere, 2019, 221: 511-518. doi: 10.1016/j.chemosphere.2019.01.044
[45] FAN G D, DU B H, ZHOU J J, et al. Porous self-floating 3D Ag2O/g-C3N4 hydrogel and photocatalytic inactivation of Microcystis aeruginosa under visible light[J]. Chemical Engineering Journal, 2021, 404: 126509. doi: 10.1016/j.cej.2020.126509
[46] FAN G D, CHEN Z, YAN Z S, et al. Efficient integration of plasmonic Ag/AgCl with perovskite-type LaFeO3: Enhanced visible-light photocatalytic activity for removal of harmful algae[J]. Journal of Hazardous Materials, 2021, 409: 125018. doi: 10.1016/j.jhazmat.2020.125018
[47] SONG J K, LI C Y, WANG X J, et al. Visible-light-driven heterostructured g-C3N4/Bi-TiO2 floating photocatalyst with enhanced charge carrier separation for photocatalytic inactivation of Microcystis aeruginosa[J]. Frontiers of Environmental Science & Engineering, 2021, 15(6): 129.
[48] CHEN Y, LI Z, WANG J J, et al. Efficient photocatalytic inactivation of Microcystis aeruginosa by a novel Z-scheme heterojunction tubular photocatalyst under visible light irradiation[J]. Journal of Colloid and Interface Science, 2022, 623: 445-455. doi: 10.1016/j.jcis.2022.04.169
[49] WANG D X, AO Y H, WANG P F. Effective inactivation of Microcystis aeruginosa by a novel Z-scheme composite photocatalyst under visible light irradiation[J]. Science of the Total Environment, 2020, 746: 141149. doi: 10.1016/j.scitotenv.2020.141149
[50] FAN G D, ZHAN J J, LUO J, et al. Fabrication of heterostructured Ag/AgCl@g-C3N4@UIO-66(NH2) nanocomposite for efficient photocatalytic inactivation of Microcystis aeruginosa under visible light[J]. Journal of Hazardous Materials, 2021, 404: 124062. doi: 10.1016/j.jhazmat.2020.124062
[51] ZHANG X, CAI M, CUI N X, et al. One-step synthesis of b-N-TiO2/C nanocomposites with high visible light photocatalytic activity to degrade Microcystis aeruginosa[J]. Catalysts, 2020, 10(5): 579. doi: 10.3390/catal10050579
[52] WEI X C, ZHU H X, XIONG J H, et al. Anti-algal activity of a fluorine-doped titanium oxide photocatalyst against Microcystis aeruginosa and its photocatalytic degradation[J]. New Journal of Chemistry, 2021, 45(37): 17483-17492. doi: 10.1039/D1NJ02873A
[53] WANG D X, CHEN J, GAO X, et al. Maximizing the utilization of photo-generated electrons and holes of g-C3N4 photocatalyst for harmful algae inactivation[J]. Chemical Engineering Journal, 2022, 431: 134105. doi: 10.1016/j.cej.2021.134105
[54] SONG J K, WANG X J, WANG J Y et al. Photocatalytic inactivation of algae using floating visible-light-responsive photocatalyst Ag2CrO4-g-C3N4-TiO2/modified expanded perlite [J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1914.
[55] FAN G D, ZHANG J K, ZHAN J J, et al. Recyclable self-floating A-GUN-coated foam as effective visible-light-driven photocatalyst for inactivation of Microcystis aeruginosa[J]. Journal of Hazardous Materials, 2021, 419: 126407. doi: 10.1016/j.jhazmat.2021.126407
[56] ZHOU L, ZHANG X, CAI M, et al. Enhanced photocatalytic inactivation of Cylindrospermopsis raciborskii by modified TiO2/Ag3PO4: Efficiency and mechanism[J]. Chemical Engineering Journal, 2023, 458: 141464. doi: 10.1016/j.cej.2023.141464
[57] ZHOU L, ZHANG X, CAI M, et al. New insights into the efficient charge transfer of the modified-TiO2/Ag3PO4 composite for enhanced photocatalytic destruction of algal cells under visible light[J]. Applied Catalysis B: Environmental, 2022, 302: 120868. doi: 10.1016/j.apcatb.2021.120868
[58] WANG M J, CHEN J F, HU L J, et al. Heterogeneous interfacial photocatalysis for the inactivation of Karenia mikimotoi by Bi2O3 loaded onto a copper metal organic framework (Bi2O3@Cu-MOF) under visible light[J]. Chemical Engineering Journal, 2023, 456: 141154. doi: 10.1016/j.cej.2022.141154
[59] FAN G D, LIN X, YOU Y F, et al. Magnetically separable ZnFe2O4/Ag3PO4/g-C3N4 photocatalyst for inactivation of Microcystis aeruginosa: Characterization, performance and mechanism[J]. Journal of Hazardous Materials, 2022, 421: 126703. doi: 10.1016/j.jhazmat.2021.126703
[60] SUN S Q, TANG Q X, YU T P, et al. Fabrication of g-C3N4@Bi2MoO6@AgI floating sponge for photocatalytic inactivation of Microcystis aeruginosa under visible light[J]. Environmental Research, 2022, 215: 114216. doi: 10.1016/j.envres.2022.114216
[61] SERRÀ A, PIP P, GÓMEZ E, et al. Efficient magnetic hybrid ZnO-based photocatalysts for visible-light-driven removal of toxic cyanobacteria blooms and cyanotoxins[J]. Applied Catalysis B: Environmental, 2020, 268: 118745. doi: 10.1016/j.apcatb.2020.118745
[62] WANG X, WANG X J, SONG J K, et al. A highly efficient TiOX (X = N and P) photocatalyst for inactivation of Microcystis aeruginosa under visible light irradiation[J]. Separation and Purification Technology, 2019, 222: 99-108. doi: 10.1016/j.seppur.2019.04.034
[63] KIM S C, LEE D K. Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water[J]. Microchemical Journal, 2005, 80(2): 227-232. doi: 10.1016/j.microc.2004.07.008
[64] GU N, GAO J L, LI H, et al. Montmorillonite-supported with Cu2O nanoparticles for damage and removal of Microcystis aeruginosa under visible light[J]. Applied Clay Science, 2016, 132/133: 79-89. doi: 10.1016/j.clay.2016.05.017
[65] FAN G D, LIN J H, XIA M Q, et al. Impact of extracellular polymeric substance in the inactivation of harmful algae by Ag2O/g-C3N4 under visible light[J]. Particle & Particle Systems Characterization, 2021, 38(2): 2000272.
[66] CHEN F R, XIAO Z G, YUE L, et al. Algae response to engineered nanoparticles: Current understanding, mechanisms and implications[J]. Environmental Science: Nano, 2019, 6(4): 1026-1042. doi: 10.1039/C8EN01368C
[67] SENDRA M, YESTE P M, MORENO-GARRIDO I, et al. CeO2 NPs, toxic or protective to phytoplankton?Charge of nanoparticles and cell wall as factors which cause changes in cell complexity[J]. Science of the Total Environment, 2017, 590/591: 304-315. doi: 10.1016/j.scitotenv.2017.03.007
[68] HE X H, WU P, WANG S L, et al. Inactivation of harmful algae using photocatalysts: Mechanisms and performance[J]. Journal of Cleaner Production, 2021, 289: 125755. doi: 10.1016/j.jclepro.2020.125755
[69] SIGNORELLA S, PALOPOLI C, LEDESMA G. Rationally designed mimics of antioxidant manganoenzymes: Role of structural features in the quest for catalysts with catalase and superoxide dismutase activity[J]. Coordination Chemistry Reviews, 2018, 365: 75-102. doi: 10.1016/j.ccr.2018.03.005
[70] LIU Y M, LI L, ZHENG L, et al. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and high pH[J]. Chemosphere, 2020, 243: 125241.
[71] WANG Y X, ZHU X S, LAO Y M, et al. TiO2 nanoparticles in the marine environment: Physical effects responsible for the toxicity on algae Phaeodactylum tricornutum[J]. Science of the Total Environment, 2016, 565: 818-826. doi: 10.1016/j.scitotenv.2016.03.164
[72] NAVARRO E, BAUN A, BEHRA R, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi[J]. Ecotoxicology, 2008, 17(5): 372-386. doi: 10.1007/s10646-008-0214-0
[73] LI F M, LIANG Z, ZHENG X, et al. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production[J]. Aquatic Toxicology, 2015, 158: 1-13. doi: 10.1016/j.aquatox.2014.10.014
[74] ZHAO J A, CAO X S, LIU X Y, et al. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: Adhesion, uptake, and toxicity[J]. Nanotoxicology, 2016, 10(9): 1297-1305. doi: 10.1080/17435390.2016.1206149
[75] YANG L M, YU L E, RAY M B. Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis[J]. Water Research, 2008, 42(13): 3480-3488. doi: 10.1016/j.watres.2008.04.023
[76] REZAYIAN M, NIKNAM V, EBRAHIMZADEH H. Oxidative damage and antioxidative system in algae[J]. Toxicology Reports, 2019, 6: 1309-1313. doi: 10.1016/j.toxrep.2019.10.001
[77] LI X, YU J G, JARONIEC M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chemical Reviews, 2019, 119(6): 3962-4179. doi: 10.1021/acs.chemrev.8b00400
[78] CHEN L F, WU X R, LIU C, et al. Study on removal of Microcystis aeruginosa and Cr (VI) using attapulgite-Fe3O4 magnetic composite material (MCM)[J]. Algal Research, 2021, 60: 102501. doi: 10.1016/j.algal.2021.102501
[79] TAO Y, MAO X Z, HU J Y, et al. Mechanisms of photosynthetic inactivation on growth suppression of Microcystis aeruginosa under UV-C stress[J]. Chemosphere, 2013, 93(4): 637-644. doi: 10.1016/j.chemosphere.2013.06.031
[80] LIU H, YANG L L, CHEN H W, et al. Preparation of floating BiOCl0.6I0.4/ZnO photocatalyst and its inactivation of Microcystis aeruginosa under visible light[J]. Journal of Environmental Sciences, 2023, 125: 362-375. doi: 10.1016/j.jes.2021.12.044
[81] NISHIYAMA Y, ALLAKHVERDIEV S I, MURATA N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2006, 1757(7): 742-749. doi: 10.1016/j.bbabio.2006.05.013
[82] 张同舟, 张学振, 刘婉婧, 等. 微囊藻毒素急性暴露对斑马鱼卵巢的损伤效应[J]. 水生态学杂志, 2021, 42(2): 116-123. ZHANG T Z, ZHANG X Z, LIU W J, et al. Ovary damage in zebrafish resulting from acute exposure to MC-LR[J]. Journal of Hydroecology, 2021, 42(2): 116-123 (in Chinese).
[83] 郭雅欣, 钱宗耀, 龚婷婷, 等. 太湖贝类中微囊藻毒素的测定与健康风险评估[J]. 环境化学, 2020, 39(10): 2673-2682. doi: 10.7524/j.issn.0254-6108.2019120802 GUO Y X, QIAN Z Y, GONG T T, et al. Determination and health risk assessment of microcystins in shellfish from Lake Taihu[J]. Environmental Chemistry, 2020, 39(10): 2673-2682 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019120802
[84] 黄艺, 张郅灏. 微囊藻毒素的致毒机理和人体健康风险评价研究进展[J]. 生态环境学报, 2013, 22(2): 357-364. HUANG Y, ZHANG Z H. Advances in the study of toxicology and human health risk assessment of microcystin[J]. Ecology and Environmental Sciences, 2013, 22(2): 357-364 (in Chinese).
[85] ALMUHTARAM H, HOFMANN R. Evaluation of ultraviolet/peracetic acid to degrade M. aeruginosa and microcystins-LR and-RR[J]. Journal of Hazardous Materials, 2022, 424: 127357. doi: 10.1016/j.jhazmat.2021.127357
[86] PELAEZ M, FALARAS P, KONTOS A G, et al. A comparative study on the removal of cylindrospermopsin and microcystins from water with NF-TiO2-P25 composite films with visible and UV-vis light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2012, 121/122: 30-39. doi: 10.1016/j.apcatb.2012.03.010
[87] TANG J F, WANG W D, YANG L, et al. Seasonal variation and ecological risk assessment of dissolved organic matter in a peri-urban critical zone observatory watershed[J]. Science of the Total Environment, 2020, 707: 136093. doi: 10.1016/j.scitotenv.2019.136093
[88] 刘思谦, 刘洋, 赵婧, 等. 溶解性有机质作用下金属纳米颗粒的聚集和溶解[J]. 环境化学, 2018, 37(7): 1638-1646. doi: 10.7524/j.issn.0254-6108.2018012802 LIU S Q, LIU Y, ZHAO J, et al. Aggregation and dissolution of metal nanoparticles in the presence of dissolved organic matters[J]. Environmental Chemistry, 2018, 37(7): 1638-1646 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018012802
[89] 于会彬, 高红杰, 宋永会, 等. 城镇化河流DOM组成结构及与水质相关性研究[J]. 环境科学学报, 2016, 36(2): 435-441. YU H B, GAO H J, SONG Y H, et al. Study on composition structure of DOM and its correlation with water quality in an urbanized river[J]. Acta Scientiae Circumstantiae, 2016, 36(2): 435-441 (in Chinese).
[90] NEILEN A D, HAWKER D W, O'BRIEN K R, et al. Phytotoxic effects of terrestrial dissolved organic matter on a freshwater cyanobacteria and green algae species is affected by plant source and DOM chemical composition[J]. Chemosphere, 2017, 184: 969-980. doi: 10.1016/j.chemosphere.2017.06.063
[91] 姚昊, 许航, 温昕, 等. 预臭氧氧化对混凝沉淀过程中有机物去除的影响[J]. 中国给水排水, 2022, 38(7): 33-42. YAO H, XU H, WEN X, et al. Effect of pre-ozonation on removal of organic matter during coagulation and sedimentation[J]. China Water & Wastewater, 2022, 38(7): 33-42 (in Chinese).
[92] 孙婧, 赵阁阁, 张运波, 等. 高铁酸钾氧化去除DOM的影响因素及荧光光谱特性[J]. 中国给水排水, 2021, 37(23): 21-27. SUN J, ZHAO G G, ZHANG Y B, et al. Influencing factors and fluorescence spectrum characteristics of DOM removed by potassium ferrate oxidation[J]. China Water & Wastewater, 2021, 37(23): 21-27 (in Chinese).
[93] 王杰琼, 乔显亮, 张耀玲, 等. 采用电渗析耦合反渗透法分离养殖海水中溶解性有机质[J]. 环境化学, 2016, 35(9): 1785-1791. doi: 10.7524/j.issn.0254-6108.2016.09.2016012902 WANG J Q, QIAO X L, ZHANG Y L, et al. Isolation of dissolved organic matter from mariculture seawaters by electrodialysis coupled with reverse osmosis[J]. Environmental Chemistry, 2016, 35(9): 1785-1791 (in Chinese). doi: 10.7524/j.issn.0254-6108.2016.09.2016012902
[94] CARP O, HUISMAN C L, RELLER A. Photoinduced reactivity of titanium dioxide[J]. Progress in Solid State Chemistry, 2004, 32(1/2): 33-177.
[95] TANG Y L, XIN H J, YANG S, et al. Environmental risks of ZnO nanoparticle exposure on Microcystis aeruginosa: Toxic effects and environmental feedback[J]. Aquatic Toxicology, 2018, 204: 19-26. doi: 10.1016/j.aquatox.2018.08.010
[96] WU F, HARPER B J, CRANDON L E, et al. Assessment of Cu and CuO nanoparticle ecological responses using laboratory small-scale microcosms[J]. Environmental Science: Nano, 2020, 7(1): 105-115. doi: 10.1039/C9EN01026B
[97] YE Y, BRUNING H, LIU W R, et al. Effect of dissolved natural organic matter on the photocatalytic micropollutant removal performance of TiO2 nanotube array[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371: 216-222. doi: 10.1016/j.jphotochem.2018.11.012
[98] REN M J, DROSOS M, FRIMMEL F H. Inhibitory effect of NOM in photocatalysis process: Explanation and resolution[J]. Chemical Engineering Journal, 2018, 334: 968-975. doi: 10.1016/j.cej.2017.10.099
[99] VALENCIA S, MARÍN J M, RESTREPO G, et al. Evaluations of the TiO2/simulated solar UV degradations of XAD fractions of natural organic matter from a bog lake using size-exclusion chromatography[J]. Water Research, 2013, 47(14): 5130-5138. doi: 10.1016/j.watres.2013.05.053
[100] JEONG B, OH M S, PARK H M, et al. Elimination of microcystin-LR and residual Mn species using permanganate and powdered activated carbon: Oxidation products and pathways[J]. Water Research, 2017, 114: 189-199. doi: 10.1016/j.watres.2017.02.043
[101] REGULSKA E, RIVERA-NAZARIO D, KARPINSKA J, et al. Zinc porphyrin-functionalized fullerenes for the sensitization of titania as a visible-light active photocatalyst: River waters and wastewaters remediation[J]. Molecules, 2019, 24(6): 1118. doi: 10.3390/molecules24061118
[102] NIVETHA M R S, KUMAR J V, AJAREM J S, et al. Construction of SnO2/g-C3N4 an effective nanocomposite for photocatalytic degradation of amoxicillin and pharmaceutical effluent[J]. Environmental Research, 2022, 209: 112809. doi: 10.1016/j.envres.2022.112809
[103] CAMACHO-MUÑOZ D, LAWTON L A, EDWARDS C. Degradation of okadaic acid in seawater by UV/TiO2 photocatalysis - Proof of concept[J]. Science of the Total Environment, 2020, 733: 139346. doi: 10.1016/j.scitotenv.2020.139346