[1] |
SHARMA V K, SOHN M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation[J]. Environment International, 2009, 35(4): 743-759. doi: 10.1016/j.envint.2009.01.005
|
[2] |
ZHANG H, SELIM H M. Reaction and transport of arsenic in soils: Equilibrium and kinetic modeling[J]. Advances in Agronomy, 2008, 98: 45-115.
|
[3] |
IRSHAD S, XIE Z M, NAWAZ A, et al. Influence of Aquatic pH on chemical speciation, phytochelation and vacuolar compartmentalization of arsenic in Vallisneria denseserrulata (Makino)[J]. International Journal of Phytoremediation, 2020, 22(11): 1147-1155. doi: 10.1080/15226514.2020.1741507
|
[4] |
CHÁVEZ-CAPILLA T. The need to unravel arsenolipid transformations in humans[J]. DNA and Cell Biology, 2022, 41(1): 64-70. doi: 10.1089/dna.2021.0476
|
[5] |
SURUCU O. Electrochemical removal of arsenic and remediation of drinking water quality[J]. Desalination and Water Treatment, 2021, 216: 246-251. doi: 10.5004/dwt.2021.26808
|
[6] |
MAMUN M A A, RAHMAN I M M, DATTA R R, et al. Arsenic speciation and biotransformation by the marine macroalga Undaria pinnatifida in seawater: A culture medium study[J]. Chemosphere, 2019, 222: 705-713. doi: 10.1016/j.chemosphere.2019.01.185
|
[7] |
FAN H L, FAN D M, HUANG J L, et al. Cooking evaluation of crayfish (Procambarus clarkia) subjected to microwave and conduction heating: A visualized strategy to understand the heat-induced quality changes of food[J]. Innovative Food Science & Emerging Technologies, 2020, 62: 102368.
|
[8] |
CHAI L Q, LI W W, WANG X W. Identification and characterization of two arasin-like peptides in red swamp crayfish Procambarus clarkii[J]. Fish & Shellfish Immunology, 2017, 70: 673-681.
|
[9] |
李思佳, 沈俊毅, 韩若冰. 上海市虹口区市售小龙虾中汞和砷的污染水平分析[J]. 现代食品, 2022, 28(19): 109-113. doi: 10.16736/j.cnki.cn41-1434/ts.2022.19.032
LI S J, SHEN J Y, HAN R B. Analysis of the contamination levels of mercury and arsenic in commercially available crayfish in Hongkou district, Shanghai[J]. Modern Food, 2022, 28(19): 109-113 (in Chinese). doi: 10.16736/j.cnki.cn41-1434/ts.2022.19.032
|
[10] |
HAN R, KHAN A, LING Z M, et al. Feed-additive Limosilactobacillus fermentum GR-3 reduces arsenic accumulation in Procambarus clarkii[J]. Ecotoxicology and Environmental Safety, 2022, 231: 113216. doi: 10.1016/j.ecoenv.2022.113216
|
[11] |
ANANDKUMAR A, LI J, PRABAKARAN K, et al. Accumulation of toxic elements in an invasive crayfish species (Procambarus clarkii) and its health risk assessment to humans[J]. Journal of Food Composition and Analysis, 2020, 88: 103449. doi: 10.1016/j.jfca.2020.103449
|
[12] |
ZHANG W, GUO Z Q, SONG D D, et al. Arsenic speciation in wild marine organisms and a health risk assessment in a subtropical bay of China[J]. Science of the Total Environment, 2018, 626: 621-629. doi: 10.1016/j.scitotenv.2018.01.108
|
[13] |
WANG J J, KERL C F, HU P J, et al. Thiolated arsenic species observed in rice paddy pore waters[J]. Nature Geoscience, 2020, 13(4): 282-287. doi: 10.1038/s41561-020-0533-1
|
[14] |
CHI H F, ZHANG Y C, WILLIAMS P N, et al. In vitro model to assess arsenic bioaccessibility and speciation in cooked shrimp[J]. Journal of Agricultural and Food Chemistry, 2018, 66(18): 4710-4715. doi: 10.1021/acs.jafc.7b06149
|
[15] |
VAHTER M. Mechanisms of arsenic biotransformation[J]. Toxicology, 2002, 181/182: 211-217. doi: 10.1016/S0300-483X(02)00285-8
|
[16] |
ZHENG L L, ZHOU Z K, RAO M M, et al. Assessment of heavy metals and arsenic pollution in surface sediments from rivers around a uranium mining area in East China[J]. Environmental Geochemistry and Health, 2020, 42(5): 1401-1413. doi: 10.1007/s10653-019-00428-x
|
[17] |
CHÉTELAT J, PALMER M J, PAUDYN K, et al. Remobilization of legacy arsenic from sediment in a large subarctic waterbody impacted by gold mining[J]. Journal of Hazardous Materials, 2023, 452: 131230. doi: 10.1016/j.jhazmat.2023.131230
|
[18] |
陈明. 采取合理措施 避免跨界污染: 贵州独山瑞丰矿业砷污染事件解析[J]. 环境保护, 2009, 37(3): 63-64.
CHEN M. Take reasonable measures to avoid cross-border pollution—Analysis of arsenic pollution in Ruifeng mining, Dushan, Guizhou Province[J]. Environmental Protection, 2009, 37(3): 63-64 (in Chinese).
|
[19] |
LI Y Z, MA L, ABUDUWAILI J, et al. Spatiotemporal distributions of fluoride and arsenic in rivers with the role of mining industry and related human health risk assessments in Kyrgyzstan[J]. Exposure and Health, 2022, 14(1): 49-62. doi: 10.1007/s12403-021-00417-5
|
[20] |
WANG C, WANG K, ZHOU W Q, et al. Occurrence, risk, and source of heavy metals in lake water columns and sediment cores in Jianghan Plain, central China[J]. International Journal of Environmental Research and Public Health, 2023, 20(4): 3676. doi: 10.3390/ijerph20043676
|
[21] |
XUE P Y, YAN C Z. Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L. f. ) Royle[J]. Chemosphere, 2011, 85(7): 1176-1181. doi: 10.1016/j.chemosphere.2011.09.051
|
[22] |
LI W X, LIU J, HUDSON-EDWARDS K A. Seasonal variations in arsenic mobility and bacterial diversity: The case study of Huangshui Creek, Shimen Realgar Mine, Hunan Province, China[J]. The Science of the Total Environment, 2020, 749: 142353. doi: 10.1016/j.scitotenv.2020.142353
|
[23] |
NAKAYA M, TAKATSU T, NAKAGAMI M, et al. Spatial distribution and feeding habits of the shrimp Crangon uritai as a predator on larval and juvenile marbled sole Pleuronectes yokohamae[J]. Fisheries Science, 2004, 70(3): 445-455. doi: 10.1111/j.1444-2906.2004.00824.x
|
[24] |
KOLTS J M, BOESE C J, MEYER J S. Acute toxicity of copper and silver to Ceriodaphnia dubia in the presence of food[J]. Environmental Toxicology and Chemistry, 2006, 25(7): 1831-1835. doi: 10.1897/05-501R.1
|
[25] |
HOOK S E, FISHER N S. Sublethal effects of silver in zooplankton: Importance of exposure pathways and implications for toxicity testing[J]. Environmental Toxicology and Chemistry, 2001, 20(3): 568-574. doi: 10.1002/etc.5620200316
|
[26] |
ROSENKRANZ P, CHAUDHRY Q, STONE V, et al. A comparison of nanoparticle and fine particle uptake by Daphnia magna[J]. Environmental Toxicology and Chemistry, 2009, 28(10): 2142-2149. doi: 10.1897/08-559.1
|
[27] |
王雨璇, 陈冠虹, 喻敏, 等. 淡水硅藻的砷甲基化和砷氧化代谢机制[J]. 环境工程学报, 2023, 17(5): 1620-1630.
WANG Y X, CHEN G H, YU M, et al. Metabolic mechanisms of arsenic methylation and oxidation in freshwater diatoms[J]. Chinese Journal of Environmental Engineering, 2023, 17(5): 1620-1630 (in Chinese).
|
[28] |
SUHENDRAYATNA, OHKI A, KUROIWA T, et al. Arsenic compounds in the freshwater green microalga Chlorella vulgaris after exposure to arsenite[J]. Applied Organometallic Chemistry, 1999, 13(2): 127-133. doi: 10.1002/(SICI)1099-0739(199902)13:2<127::AID-AOC810>3.0.CO;2-K
|
[29] |
CAUMETTE G, KOCH I, MORIARTY M, et al. Arsenic distribution and speciation in Daphnia pulex[J]. Science of the Total Environment, 2012, 432: 243-250. doi: 10.1016/j.scitotenv.2012.05.050
|
[30] |
GEDIK K, KONGCHUM M, DeLAUNE R D, et al. Distribution of arsenic and other metals in crayfish tissues (Procambarus clarkii) under different production practices[J]. Science of the Total Environment, 2017, 574: 322-331. doi: 10.1016/j.scitotenv.2016.09.060
|
[31] |
CIARDULLO S, AURELI F, RAGGI A, et al. Arsenic speciation in freshwater fish: Focus on extraction and mass balance[J]. Talanta, 2010, 81(1/2): 213-221.
|
[32] |
周志豪, 黄振华, 周朝生, 等. 振荡提取-高效液相色谱-电感耦合等离子体质谱法测定藻类中6种形态砷化合物[J]. 山东化工, 2018, 47(21): 71-73, 76. doi: 10.19319/j.cnki.issn.1008-021x.2018.21.027
ZHOU Z H, HUANG Z H, ZHOU C S, et al. Arsenic speciation analysis of algae by using vibrated extraction high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Shandong Chemical Industry, 2018, 47(21): 71-73, 76 (in Chinese). doi: 10.19319/j.cnki.issn.1008-021x.2018.21.027
|
[33] |
宋梦萍, 杨常亮, 张璟, 等. 食物相暴露条件下尼罗罗非鱼对砷的累积与转化[J]. 环境化学, 2022, 41(6): 1897-1904. doi: 10.7524/j.issn.0254-6108.2021113002
SONG M P, YANG C L, ZHANG J, et al. Accumulation and transformation of arsenic in Oreochromis niloticus under food phase exposure[J]. Environmental Chemistry, 2022, 41(6): 1897-1904 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021113002
|
[34] |
PAPRY R I, FUJISAWA S, ZAI Y H, et al. Freshwater phytoplankton: Salinity stress on arsenic biotransformation[J]. Environmental Pollution, 2021, 270: 116090. doi: 10.1016/j.envpol.2020.116090
|
[35] |
WEBSTER L, RUSSELL M, WALSHAM P, et al. Halogenated persistent organic pollutants in relation to trophic level in deep sea fish[J]. Marine Pollution Bulletin, 2014, 88(1/2): 14-27.
|
[36] |
ZHANG J Q, HU X L, ZHANG K J, et al. Desorption of calcium-rich crayfish shell biochar for the removal of lead from aqueous solutions[J]. Journal of Colloid and Interface Science, 2019, 554: 417-423. doi: 10.1016/j.jcis.2019.06.096
|
[37] |
XIONG B, XU T, LI R P, et al. Heavy metal accumulation and health risk assessment of crayfish collected from cultivated and uncultivated ponds in the Middle Reach of Yangtze River[J]. Science of the Total Environment, 2020, 739: 139963. doi: 10.1016/j.scitotenv.2020.139963
|
[38] |
PALOMA A, ANGEL B. The trophic ecology of the red swamp crayfish (Procambarus clarkii) in Mediterranean aquatic ecosystems: A stable isotope study[J]. Limnetica, 2013(32): 121-138. doi: 10.23818/limn.32.12
|
[39] |
SCHAEFFER R, FRANCESCONI K A, KIENZL N, et al. Arsenic speciation in freshwater organisms from the River Danube in Hungary[J]. Talanta, 2006, 69(4): 856-865. doi: 10.1016/j.talanta.2005.11.025
|
[40] |
SOEROES C, GOESSLER W, FRANCESCONI K A, et al. Arsenic speciation in farmed Hungarian freshwater fish[J]. Journal of Agricultural and Food Chemistry, 2005, 53(23): 9238-9243. doi: 10.1021/jf0516639
|