[1] WU Y Q, ZHOU X, ZHOU L Y, et al. Structural controls of the northern Red River Fault Zone on the intensity of hydrothermal activity and distribution of hot springs in the Yunnan-Tibet geothermal belt[J]. Geothermics, 2023, 109: 102641. doi: 10.1016/j.geothermics.2022.102641
[2] 周训. 地下水科学专论[M]. 北京: 地质出版社, 2010. ZHOU X. Monograph on groundwater science[M]. Beijing: Publishing House, 2010(in Chinese).
[3] SHUKLA A, MANIAR K, PILLAI A, et al. Geothermal water in Bakreshwar-Tantoli region in West Bengal, India: implications on water quality for irrigation and drinking purposes[J]. Groundwater for Sustainable Development, 2022, 18: 100773. doi: 10.1016/j.gsd.2022.100773
[4] GUO Q H, WANG Y X, LIU W. B, As, and F contamination of river water due to wastewater discharge of the Yangbajing geothermal power plant, Tibet, China[J]. Environmental Geology, 2008, 56(1): 197-205. doi: 10.1007/s00254-007-1155-2
[5] WANG M M, ZHOU X, LIU Y, et al. Major, trace and rare earth elements geochemistry of geothermal waters from the Rehai high-temperature geothermal field in Tengchong of China[J]. Applied Geochemistry, 2020, 119: 104639. doi: 10.1016/j.apgeochem.2020.104639
[6] DENG Y M, NORDSTROM D K, BLAINE MCCLESKEY R. Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation[J]. Geochimica et Cosmochimica Acta, 2011, 75(16): 4476-4489. doi: 10.1016/j.gca.2011.05.028
[7] MORALES-SIMFORS N, BUNDSCHUH J. Arsenic-rich geothermal fluids as environmentally hazardous materials–A global assessment[J]. Science of the Total Environment, 2022, 817: 152669. doi: 10.1016/j.scitotenv.2021.152669
[8] 周默. 几种水质评价方法在地表水评价中的应用及比较研究[J]. 水资源开发与管理, 2022, 8(9): 50-55 ZHOU M. Application and comparative study of several evaluation methods for water quality in surface water evaluation[J]. The Global Seabuckthorn Research and Development, 2022, 8(9): 50-55(in Chinese).
[9] ZHANG Q Y, XU P P, QIAN H. Groundwater quality assessment using improved water quality index (WQI) and human health risk (HHR) evaluation in a semi-arid region of northwest China[J]. Exposure and Health, 2020, 12(3): 487-500. doi: 10.1007/s12403-020-00345-w
[10] SHAH M, SIRCAR A, VARSADA R, et al. Assessment of geothermal water quality for industrial and irrigation purposes in the Unai geothermal field, Gujarat, India[J]. Groundwater for Sustainable Development, 2019, 8: 59-68. doi: 10.1016/j.gsd.2018.08.006
[11] AHSAN W A, AHMAD H R, FAROOQI Z U R, et al. Surface water quality assessment of Skardu springs using Water Quality Index[J]. Environmental Science and Pollution Research, 2021, 28(16): 20537-20548. doi: 10.1007/s11356-020-11818-5
[12] QU B, ZHANG Y L, KANG S C, et al. Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the “Water Tower of Asia”[J]. Science of the Total Environment, 2019, 649: 571-581. doi: 10.1016/j.scitotenv.2018.08.316
[13] HU S B, HE L J, WANG J Y. Heat flow in the continental area of China: A new data set[J]. Earth and Planetary Science Letters, 2000, 179(2): 407-419. doi: 10.1016/S0012-821X(00)00126-6
[14] 庄庆祥. 福建地热资源勘查研究[J]. 能源与环境, 2015(1): 2-4. ZHUANG Q X. Study on geothermal resources exploration in Fujian[J]. Energy and Environment, 2015(1): 2-4(in Chinese).
[15] 魏斯禹, 刘绍成, 敖光华, 等. 福建省陆缘地热活动及地球物理场特征[J]. 西北地震学报, 1988(3): 74-81. WEI S Y, LIU S C, AO G H, et al. The Geothermal Activity and the Characteristics of Geophysics Field in Continental Margin of Fujian Province[J]. Northwestern Seismological Journal, 1988(3): 74-81(in Chinese).
[16] 庞忠和, 樊志成, 汪集旸. 漳州盆地水热系统的氢氧稳定同位素研究[J]. 岩石学报, 1990, 6(4): 75-84. PANG Z H, FAN Z C, WANG J Y. The study on stable oxygen and hydrogen isotopes in the Zhangzhou Basin hydrothermal system[J]. Acta Petrologica Sinica, 1990, 6(4): 75-84 (in Chinese).
[17] 廖丽霞, 秦双龙. 福建流体台网对日本9级巨震的响应特征分析[J]. 内陆地震, 2014, 28(4): 298-304. LIAO L X, QIN S L. Responding characteristics of Fujian fluid network for Japan earthquake with Ms9.0[J]. Inland Earthquake, 2014, 28(4): 298-304(in Chinese).
[18] ZHANG Y, ZHANG Y J, YU H, et al. Geothermal resource potential assessment of Fujian Province, China, based on geographic information system (GIS)-supported models[J]. Renewable Energy, 2020, 153: 564-579. doi: 10.1016/j.renene.2020.02.044
[19] 王琼. 福建东南沿海地区地下水质量与防治对策探析[J]. 福建建筑, 2022, (11): 141-144. WANG Q. Studies about the underground water quality in southeastern coastal areas of Fujian and preventive countermeasures[J]. Fujian Architecture & Construction, 2022, (11): 141-144(in Chinese).
[20] 韦德光, 揭育金, 黄廷淦. 福建省区域地质构造特征[J]. 中国区域地质, 1997(2): 51-59. WEI D G, JIE Y J, HUANG T G. Regional geological structure of Fujian[J]. Regional Geology of China, 1997(2): 51-59(in Chinese).
[21] 谢其锋, 蔡元峰, 董云鹏, 等. 福建上杭地区燕山期花岗岩锆石U-Pb年代学及Hf同位素组成[J]. 地质学报, 2017, 91(10): 2212-2230. XIE Q F, CAI Y F, DONG Y P, et al. LA-ICP-MS zircon U-Pb geochronology and Hf isotopic compositions of yanshanian granites in the Shanghang area, Fujian Province[J]. Acta Geologica Sinica, 2017, 91(10): 2212-2230(in Chinese).
[22] 贺振宇, 颜丽丽, 褚平利, 等. 中国东南沿海晚白垩世长屿火山的活动过程与古环境意义[J]. 岩石学报, 2022, 38(5)1419-1442. doi: 10.18654/1000-0569/2022.05.10 HE Z Y, YAN L L, CHU P L, et al. Volcanological evolution and paleoenvironment of the late cretaceous changyu volcano in the coastal SE China[J]. Acta Petrologica Sinica, 2022, 38(5): 1419-1442(in Chinese). doi: 10.18654/1000-0569/2022.05.10
[23] HUANG Q T, ZHENG S P. Micro-relief research on active fault in the coast of southeast Fujian and adjacent area[J]. Progress in Geophysics, 2006: 1099-1107.
[24] 林小平, 林木好. 福州市地热资源勘查开发利用现状及建议[J]. 上海地质, 2010(B11): 251-253, 257. LIN X P, LIN M H. Fuzhou geothermal resources exploration&exploitation situation and proposal[J]. Shanghai Geology, 2010, 31(B11): 251-253, 257(in Chinese).
[25] 张远城. 漳州地区地下热水的水文地质特征及映震效应[J]. 台湾海峡, 1993(3): 272-279. ZHANG Y C. Hydrogeogical characteristics of underground hot water from Zhangzhou region and its response to earthquake[J]. Journal of Oceanography in Taiwan Strait, 1993(3): 272-279(in Chinese).
[26] YAN Y C, ZHOU X C, LIAO L X, et al. Hydrogeochemical characteristic of geothermal water and precursory anomalies along the Xianshuihe fault zone, southwestern China[J]. Water, 2022, 14(4): 550. doi: 10.3390/w14040550
[27] ZHOU R L, ZHOU X C, LI Y, et al. Hydrogeochemical and isotopic characteristics of the hot springs in the Litang fault zone, southeast Qinghai–Tibet Plateau[J]. Water, 2022, 14(9): 1496. doi: 10.3390/w14091496
[28] BORA M, GOSWAMI D C. Water quality assessment in terms of water quality index (WQI): Case study of the Kolong River, Assam, India[J]. Applied Water Science, 2017, 7(6): 3125-3135. doi: 10.1007/s13201-016-0451-y
[29] 徐祖信. 我国河流单因子水质标识指数评价方法研究[J]. 同济大学学报(自然科学版), 2005, 33(3)321-325. XU Z X. Single factor water quality identification index for environmental quality assessment of surface water[J]. Journal of Tongji University (Natural Science), 2005, 33(3): 321-325(in Chinese).
[30] WANG B, ZHOU X C, ZHOU Y S, et al. Hydrogeochemistry and precursory anomalies in thermal springs of Fujian (southeastern China) associated with earthquakes in the Taiwan strait[J]. Water, 2021, 13(24): 3523. doi: 10.3390/w13243523
[31] 范祖金, 魏兴, 李佳文, 等. 重庆市万州区浅层地下水化学特征及控制因素[J]. 环境化学, 2023, 42(1): 113-124. FAN Z J, WEI X, LI J W, et al. Chemical characteristics and controlling factors of shallow groundwater in Wanzhou district of Chongqing[J]. Environmental Chemistry, 2023, 42(1): 113-124 (in Chinese).
[32] 陈京鹏, 闫燕, 冯颖, 等. 黄河流域下游德州地区地下水水化学成因及生态环境影响[J]. 环境化学, 2023, 42(1): 125-137. doi: 10.7524/j.issn.0254-6108.2022081103 CHEN J P, YAN Y, FENG Y, et al. Hydrochemical genesis and ecological environment influence of groundwater in Dezhou city at lower Yellow River Basin[J]. Environmental Chemistry, 2023, 42(1): 125-137 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022081103
[33] SRACEK O, WANKE H, NDAKUNDA N N, et al. Geochemistry and fluoride levels of geothermal springs in Namibia[J]. Journal of Geochemical Exploration, 2015, 148: 96-104. doi: 10.1016/j.gexplo.2014.08.012
[34] 欧浩, 卢国平, 胡晓农, 等. 广东省信宜-廉江地区地热水中氟的富集过程[J]. 环境化学, 2019, 38(5): 1128-1138. doi: 10.7524/j.issn.0254-6108.2018092303 OU H, LU G P, HU X N, et al. Fluoride enrichment in geothermal waters in Xinyi-Lianjiang region, Guangdong[J]. Environmental Chemistry, 2019, 38(5): 1128-1138(in Chinese). doi: 10.7524/j.issn.0254-6108.2018092303
[35] 李英, 吴平, 张勃, 等. 灵武市北部高氟地下水的分布特征及影响因素[J]. 环境化学, 2020, 39(9): 2520-2528. doi: 10.7524/j.issn.0254-6108.2019063002 LI Y, WU P, ZHANG B, et al. Distribution characteristics and formation factors of high fluoride groundwater in the north of Lingwu City[J]. Environmental Chemistry, 2020, 39(9): 2520-2528(in Chinese). doi: 10.7524/j.issn.0254-6108.2019063002
[36] 胡云虎. 皖北地下水源地水环境地球化学特征研究[D]. 淮南:安徽理工大学, 2015. Huainan:HU Y H. Study on geochemical features of groundwater source in north Anhui Province[D]. Anhui University of Science& Technology, 2015(in Chinese).
[37] 乌丽罕. 衡水地区高氟地下水化学特征及其成因[D]. 北京: 中国地质大学(北京), 2015. WU L H. Characteristics and genesis of high-fluoride groundwater in Hengshui city, the north China Plain[D]. Beijing: China University of Geosciences (Beijing), 2015(in Chinese).
[38] 吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436. L X L, LIU J T, ZHOU B, et al. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin[J]. Earth Science Frontiers, 2021, 28(2): 426-436(in Chinese).
[39] 梁礼革, 朱明占, 朱思萌, 等. 桂东地区地热水中氟的分布及其富集过程研究[J]. 安全与环境工程, 2015, 22(1): 1-6. LIANG L G, ZHU Z M, ZHU S M, et al. Spatial distribution and enrichment of fluoride in geothermal water from eastern guangxi, China[J]. Safety and Environmental Engineering, 2015, 22(1): 1-6(in Chinese).
[40] 孙红丽, 马峰, 刘昭, 等. 西藏高温地热显示区氟分布及富集特征[J]. 中国环境科学, 2015, 35(1): 251-259. SUN H L, MA F, LIU Z, et al. The distribution and enrichment characteristics of fluoride in geothermal active area in tibet[J]. China Environmental Science, 2015, 35(1): 251-259(in Chinese).
[41] ZHANG Y F, TAN H B, ZHANG W J, et al. Geochemical constraint on origin and evolution of solutes in geothermal springs in western Yunnan, China[J]. Geochemistry, 2016, 76(1): 63-75. doi: 10.1016/j.chemer.2015.11.002
[42] 谭梦如, 周训, 张彧齐, 等. 云南勐海县勐阿街温泉水化学和同位素特征及成因[J]. 水文地质工程地质, 2019, 46(3): 70-80. TAN M R, ZHOU X, ZHANG Y Q, et al. Hydrochemical and isotopic characteristics and formation of the Mengajie hot spring in Menghai County of Yunnan[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 70-80(in Chinese).
[43] 李晓露. 云南洱源县牛街温泉的水化学特征与成因[D]. 北京: 中国地质大学(北京), 2017. LI X L. Hydrochemical characteristics and formation of the niujie hot springs in eryuan County of Yunnan[D]. Beijing: China University of Geosciences (Beijing), 2017(in Chinese).
[44] LIU M L, GUO Q H, WU G, et al. Boron geochemistry of the geothermal waters from two typical hydrothermal systems in Southern Tibet (China): Daggyai and Quzhuomu[J]. Geothermics, 2019, 82: 190-202. doi: 10.1016/j.geothermics.2019.06.009
[45] TIAN J, LI Y M, ZHOU X C, et al. Geochemical characteristics of hydrothermal volatiles from southeast China and their implications on the tectonic structure controlling heat convection[J]. Frontiers in Earth Science, 2021, 9: 786051. doi: 10.3389/feart.2021.786051
[46] RAHMAN M S, REZA A H M S, AHSAN M A, et al. Arsenic in groundwater from Southwest Bangladesh: Sources, water quality, and potential health concern[J]. HydroResearch, 2023, 6: 1-15. doi: 10.1016/j.hydres.2022.12.001
[47] ZHOU Y Z, TU Z, ZHOU J L, et al. Distribution, dynamic and influence factors of groundwater arsenic in the Manas River Basin in Xinjiang, PR China[J]. Applied Geochemistry, 2022, 146: 105441. doi: 10.1016/j.apgeochem.2022.105441
[48] 颜港归, 张庆华, 张鹏, 等. 高砷地下水分布特征与形成机理研究[J]. 地下水, 2022, 44(5): 16-18, 23. doi: 10.19807/j.cnki.DXS.2022-05-006 YAN G G, ZHANG Q H, ZHANG P, et al. Study on distribution characteristics and formation mechanism of high arsenic groundwater[J]. Ground Water, 2022, 44(5): 16-18, 23(in Chinese). doi: 10.19807/j.cnki.DXS.2022-05-006
[49] ZHANG H X, ZHANG W, WANG G L, et al. Distribution and genetic mechanism of high arsenic geothermal water in the Batang area, Western Sichuan[J]. Geothermics, 2021, 97: 102232. doi: 10.1016/j.geothermics.2021.102232
[50] JHA P K, TRIPATHI P. Arsenic and fluoride contamination in groundwater: A review of global scenarios with special reference to India[J]. Groundwater for Sustainable Development, 2021, 13: 100576. doi: 10.1016/j.gsd.2021.100576
[51] BHATTACHARYA P, CLAESSON M, BUNDSCHUH J, et al. Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province, Argentina[J]. Science of the Total Environment, 2006, 358(1/2/3): 97-120.