[1] YANG J S, WANG H F, ZHANG G W, et al. Recycling organics from non-metallic fraction of waste printed circuit boards by a novel conical surface triboelectric separator[J]. Resources, Conservation and Recycling, 2019, 146: 264-269. doi: 10.1016/j.resconrec.2019.03.008
[2] HADI P, XU M, LIN C S K, et al. Waste printed circuit board recycling techniques and product utilization[J]. Journal of Hazardous Materials, 2015, 283: 234-243. doi: 10.1016/j.jhazmat.2014.09.032
[3] 顾明事, 李兴福, 赵泽华, 等. 江苏省废线路板处置利用现状及管理对策研究[J]. 污染防治技术, 2017, 30(5): 90-94. GU M S, LI X F, ZHAO Z H, et al. Studies on waste circuit boards disposal and management countermeasures in Jiangsu Province[J]. Pollution Control Technology, 2017, 30(5): 90-94 (in Chinese).
[4] PANT D, JOSHI D, UPRETI M K, et al. Chemical and biological extraction of metals present in E waste: A hybrid technology[J]. Waste Management, 2012, 32(5): 979-990. doi: 10.1016/j.wasman.2011.12.002
[5] 葛亚军, 金宜英, 聂永丰. 电子废弃物回收管理现状与研究[J]. 环境科学与技术, 2006, 29(3): 61-63, 118. GE Y J, JIN Y Y, NIE Y F. Recovery and management of electronic wastes: Status quo and needs for improvement[J]. Environmental Science & Technology, 2006, 29(3): 61-63, 118 (in Chinese).
[6] HUANG K, GUO J, XU Z M. Recycling of waste printed circuit boards: A review of current technologies and treatment status in China[J]. Journal of Hazardous Materials, 2009, 164(2/3): 399-408.
[7] YAMANE L H, de MORAES V T, ESPINOSA D C R, et al. Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers[J]. Waste Management, 2011, 31(12): 2553-2558. doi: 10.1016/j.wasman.2011.07.006
[8] 杨春刚, 戈保梁, 李飞, 等. 废旧印刷线路板的再资源化技术及新进展[J]. 矿产综合利用, 2016(5): 6-9. YANG C G, GE B L, LI F, et al. Resource recovery technology of and new progress of WPCB[J]. Multipurpose Utilization of Mineral Resources, 2016(5): 6-9 (in Chinese).
[9] 董卿, 尤飞, 蒋军成, 等. 废弃FR1酚醛树脂印刷线路板热解特性及动力学分析[J]. 安全与环境学报, 2016, 16(3): 279-284. DONG Q, YOU F, JIANG J C, et al. Pyrolysis characteristics and dynamic analysis of the waste FR1 phenol resin PC board[J]. Journal of Safety and Environment, 2016, 16(3): 279-284 (in Chinese).
[10] 马硕, 刘万福, 马洪亭, 等. 废弃印刷线路板热解过程传热特性实验研究[J]. 环境科学学报, 2018, 38(12): 4760-4768. MA S, LIU W F, MA H T, et al. Experimental investigation on the heat transfer characteristics of waste printed circuit boards during pyrolysis[J]. Acta Scientiae Circumstantiae, 2018, 38(12): 4760-4768 (in Chinese).
[11] 杨崇, 朱能武, 崔佳莹, 等. 胞外聚合物对生物浸出线路板金属粉末中铜的作用[J]. 环境工程学报, 2015, 9(9): 4503-4508. YANG C, ZHU N W, CUI J Y, et al. Extracellular polymeric substances’ role in bioleaching copper from metal concentrates of waste printed circuit boards[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4503-4508 (in Chinese).
[12] FENG P, WANG Z, MENG L, et al. Supergravity-enhanced liquation crystallization for metal recovery from waste printed circuit boards[J]. Chemical Engineering and Processing - Process Intensification, 2022, 173: 108813. doi: 10.1016/j.cep.2022.108813
[13] ROCCHETTI L, AMATO A, BEOLCHINI F. Printed circuit board recycling: A patent review[J]. Journal of Cleaner Production, 2018, 178: 814-832. doi: 10.1016/j.jclepro.2018.01.076
[14] VANEGAS P, PEETERS J R, CATTRYSSE D, et al. Ease of disassembly of products to support circular economy strategies[J]. Resources, Conservation and Recycling, 2018, 135: 323-334. doi: 10.1016/j.resconrec.2017.06.022
[15] 江苏省市场监督管理局. 废线路板综合利用污染控制技术规范: DB32/T 3942—2021[S]. 南京: 江苏省市场监督管理局, 2021. Technical specifications for pollution control of comprehensive utilization of waste printed circuit boards: DB32/T 3942—2021[S]. Nanjing: Market Supervision Administration of Jiangsu Province, 2021 (in Chinese).
[16] GUO C, WANG H, LIANG W, et al. Liberation characteristic and physical separation of printed circuit board (PCB)[J]. Waste Management, 2011, 31(9/10): 2161-2166.
[17] 谭淑妃, 郭杰, 许振明. 废电路板热拆解过程中颗粒污染物的排放特征[J]. 环境科学与技术, 2019, 42(12): 74-80. TAN S F, GUO J, XU Z M. Emission characteristics of particulate pollutants from the thermal disassembly of waste printed circuit boards[J]. Environmental Science & Technology, 2019, 42(12): 74-80 (in Chinese).
[18] 王建波. 废旧电路板上元器件的环境友好拆解及铝电容器和晶体管的资源化回收[D]. 上海: 上海交通大学, 2017. WANG J B. Environmetally friendly disassembly of electronic components from waste printed circuit boards and resources recovery of aluminum electrolytic capacitors and transistors[D]. Shanghai: Shanghai Jiao Tong University, 2017 (in Chinese).
[19] 吴文成, 宋清梅, 刘谞承, 等. 电子废物拆解区典型用地土壤重金属分布特征[J]. 中国环境科学, 2018, 38(7): 2632-2638. WU W C, SONG Q M, LIU X C, et al. Distribution pattern of heavy metals in soils with respect to typical land uses in electronic waste recycling region[J]. China Environmental Science, 2018, 38(7): 2632-2638 (in Chinese).
[20] 缪雄谊. 重金属污染的扩散迁移及其健康风险评价: 以三角洲和河流为例[D]. 合肥: 中国科学技术大学, 2020. MIAO X Y. The conversion, migration and health risk assessment of heavy metals pollution— a field study in typical delta and river[D]. Hefei: University of Science and Technology of China, 2020 (in Chinese).
[21] CHENG Z, CHEN L J, LI H H, et al. Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China[J]. Science of the Total Environment, 2018, 619/620: 621-629. doi: 10.1016/j.scitotenv.2017.11.144
[22] LI H M, WANG J H, WANG Q G, et al. Chemical fractionation of arsenic and heavy metals in fine particle matter and its implications for risk assessment: A case study in Nanjing, China[J]. Atmospheric Environment, 2015, 103: 339-346. doi: 10.1016/j.atmosenv.2014.12.065
[23] LOSKA K, WIECHUŁA D, PELCZAR J. Application of enrichment factor to assessment of zinc enrichment/depletion in farming soils[J]. Communications in Soil Science and Plant Analysis, 2005, 36(9/10): 1117-1128.
[24] 魏复盛, 杨国治, 蒋德珍, 等. 中国土壤元素背景值基本统计量及其特征[J]. 中国环境监测, 1991, 7(1): 1-6. WEI F S, YANG G Z, JIANG D Z, et al. Basic statistics and characteristics of background values of soil elements in China[J]. Environmental Monitoring in China, 1991, 7(1): 1-6 (in Chinese).
[25] ZHOU L, LIU G J, SHEN M C, et al. Characteristics and health risk assessment of heavy metals in indoor dust from different functional areas in Hefei, China[J]. Environmental Pollution, 2019, 251: 839-849. doi: 10.1016/j.envpol.2019.05.058
[26] LOSKA K, CEBULA J, PELCZAR J, et al. Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland[J]. Water, Air, and Soil Pollution, 1997, 93(1): 347-365.
[27] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8
[28] WANG J Y, CHEN H, XIA W Y, et al. Heavy metal pollution in the surface dust from E-waste disposal place and its ecological risk assessment[J]. Advanced Materials Research, 2011, 347-353: 2360-2364. doi: 10.4028/www.scientific.net/AMR.347-353.2360
[29] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115. XU Z Q, NI S J, TUO X G, et al. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 2008, 31(2): 112-115 (in Chinese).
[30] 杨舒珺. 重金属工业废水渗坑的风险评价及渗坑废水处理研究[D]. 天津: 天津大学, 2018. YANG S J. The risk assessment and treatment of industrial heavy-metal wastewater ponds[D]. Tianjin: Tianjin University, 2018 (in Chinese).
[31] 陈润甲, 田艳梅, 张钧, 等. 山西省某焦化厂周边土壤中重金属污染评价及特征分析[J]. 天津农业科学, 2020, 26(6): 79-84. CHEN R J, TIAN Y M, ZHANG J, et al. Evaluation and characteristic analysis of heavy metal pollution in soil of a coking plant in Shanxi Province[J]. Tianjin Agricultural Sciences, 2020, 26(6): 79-84 (in Chinese).
[32] 汪锐. 废旧电路板破碎过程中污染物的生成释放及转化机理研究[D]. 上海: 上海交通大学, 2020. WANG R. Study on the formation, release and conversion mechanism of pollutants in process of crushing waste printed circuit boards[D]. Shanghai: Shanghai Jiao Tong University, 2020 (in Chinese).
[33] ZHOU P, GUO J, ZHOU X Y, et al. PM2.5, PM10 and health risk assessment of heavy metals in a typical printed circuit noards manufacturing workshop[J]. Journal of Environmental Sciences, 2014, 26(10): 2018-2026. doi: 10.1016/j.jes.2014.08.003
[34] 刘方方. 物理法从废线路板中回收铜合金粉末新技术研究[D]. 广州: 华南理工大学, 2020. LIU F F. Investigation of a novel technology of recycling copper alloy powders from waste printed circuit boards by physical method[D]. Guangzhou: South China University of Technology, 2020 (in Chinese).
[35] 周啸宇. 印刷电路板生产、回收拆解及废弃堆置过程中重金属与溴系阻燃剂的污染、释放规律及人体暴露研究[D]. 上海: 华东理工大学, 2014. ZHOU X Y. Occurrence and emssion of heavy metals and brominated flame retardants in printed circuit board production, recycling and disposal processes and human exposure assessment[D]. Shanghai: East China University of Science and Technology, 2014 (in Chinese).
[36] 刘伟锋, 胡晓丽, 张杜超, 等. 废线路板破碎分选产物的工艺矿物学[J]. 中国有色金属学报, 2022, 32(9): 2703-2713. LIU W F, HU X L, ZHANG D C, et al. Process mineralogy of waste printed circuit board crushing and sorting products[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(9): 2703-2713 (in Chinese).
[37] WANG Q, ZHANG B G, YU S Q, et al. Waste-printed circuit board recycling: Focusing on preparing polymer composites and geopolymers[J]. ACS Omega, 2020, 5(29): 17850-17856. doi: 10.1021/acsomega.0c01884
[38] GONZÁLEZ-MARTÍN J, KRAAKMAN N J R, PÉREZ C, et al. A state–of–the-art review on indoor air pollution and strategies for indoor air pollution control[J]. Chemosphere, 2021, 262: 128376. doi: 10.1016/j.chemosphere.2020.128376
[39] REIS A M, CAVE M, SOUSA A J, et al. Lead and zinc concentrations in household dust and toenails of the residents (Estarreja, Portugal): A source-pathway-fate model[J]. Environmental Science. Processes & Impacts, 2018, 20(9): 1210-1224.
[40] SHI T R, WANG Y H. Heavy metals in indoor dust: Spatial distribution, influencing factors, and potential health risks[J]. Science of the Total Environment, 2021, 755: 142367. doi: 10.1016/j.scitotenv.2020.142367
[41] 陶红, 张小红, 王亚娟, 等. 银川市城区地表灰尘重金属污染分布特征及健康风险评价[J]. 环境化学, 2022, 41(8): 2573-2585. doi: 10.7524/j.issn.0254-6108.2021042501 TAO H, ZHANG X H, WANG Y J, et al. Pollution characteristics and health risk assessment of heavy metals of surface dust in urban areas of Yinchuan[J]. Environmental Chemistry, 2022, 41(8): 2573-2585 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021042501
[42] 周利. 室内颗粒物的环境化学特征、来源识别及风险评价: 以合肥市为例[D]. 合肥: 中国科学技术大学, 2022. ZHOU L. Environmental chemical characteristics, source identification and risk assessment of indoor particulates— a case in Hefei, China[D]. Hefei: University of Science and Technology of China, 2022 (in Chinese).
[43] 黄波涛. 典型危废处置利用企业周边土壤重金属分布特征、来源及风险评价[J]. 环境化学, 2023, 42(2): 435-445. doi: 10.7524/j.issn.0254-6108.2022062403 HUANG B T. Distribution characteristics, sources analysis and potential ecological risk assessment of heavy metals in soils surrounding typical hazardous waste disposal and utilization plants[J]. Environmental Chemistry, 2023, 42(2): 435-445(in Chinese). doi: 10.7524/j.issn.0254-6108.2022062403
[44] WANG S B, YAN Q S, ZHANG R Q, et al. Size-fractionated particulate elements in an inland city of China: Deposition flux in human respiratory, health risks, source apportionment, and dry deposition[J]. Environmental Pollution, 2019, 247: 515-523. doi: 10.1016/j.envpol.2019.01.051