[1] |
FENDORF S, MICHAEL H A, van GEEN A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia[J]. Science, 2010, 328(5982): 1123-1127. doi: 10.1126/science.1172974
|
[2] |
国家市场监督管理总局, 国家标准化管理委员会. 生活饮用水卫生标准: GB 5749—2022[S]. 北京: 中国标准出版社, 2022.
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Standards for drinking water quality: GB 5749—2022[S]. Beijing: Standards Press of China, 2022(in Chinese).
|
[3] |
吴丰昌, 王立英, 黎文, 等. 天然有机质及其在地表环境中的重要性[J]. 湖泊科学, 2008, 20(1): 1-12. doi: 10.18307/2008.0101
WU F C, WANG L Y, LI W, et al. Natural organic matter and its significance in terrestrial surface environment[J]. Journal of Lake Sciences, 2008, 20(1): 1-12 (in Chinese). doi: 10.18307/2008.0101
|
[4] |
WANG Y X, PI K F, FENDORF S, et al. Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems[J]. Earth-Science Reviews, 2019, 189: 79-98. doi: 10.1016/j.earscirev.2017.10.007
|
[5] |
刘韩. 河套平原高砷地下水中异化铁还原菌对砷迁移转化的影响研究[D]. 武汉: 中国地质大学, 2021.
LIU H. Arsenic mobilization affected by dissimilatory iron reducing bacteria from high arsenic groundwater in Hetao Basin[D]. Wuhan: China University of Geosciences, 2021 (in Chinese).
|
[6] |
郭华明, 郭琦, 贾永锋, 等. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 2013, 35(3): 83-96.
GUO H M, GUO Q, JIA Y F, et al. Chemical characteristics and geochemical processes of high arsenic groundwater in different regions of China[J]. Journal of Earth Sciences and Environment, 2013, 35(3): 83-96 (in Chinese).
|
[7] |
鲁宗杰, 邓娅敏, 杜尧, 等. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义[J]. 地球科学, 2017, 42(5): 771-782.
LU Z J, DENG Y M, DU Y, et al. EEMs characteristics of dissolved organic matter and their implication in high arsenic groundwater of Jianghan plain[J]. Earth Science, 2017, 42(5): 771-782 (in Chinese).
|
[8] |
韩莉, 甘义群, 于凯. 江汉平原高砷地下水中溶解性有机质来源的稳定碳同位素示踪研究[J]. 地质学报, 2015, 89(增刊1): 266-268.
HAN L, GAN Y Q, YU K. Stable carbon isotope tracing study on the source of dissolved organic matter in high arsenic groundwater in Jianghan plain[J]. Acta Geologica Sinica, 2015, 89(Sup 1): 266-268 (in Chinese).
|
[9] |
梁梦钰, 郭华明, 李晓萌, 等. 贵德盆地三河流域高砷地下水中溶解性有机物三维荧光特性及其指示意义[J]. 地学前缘, 2019, 26(3): 243-254.
LIANG M Y, GUO H M, LI X M, et al. Excitation-emission matrix spectroscopic characteristics of dissolved organic matters and the significance in high arsenic groundwater research in the Guide Basin, China[J]. Earth Science Frontiers, 2019, 26(3): 243-254 (in Chinese).
|
[10] |
关林瑞, 钱坤, 李俊霞, 等. 大同盆地地下水系统中碘迁移富集的生物标志物证据[J]. 地质科技情报, 2019, 38(1): 235-242.
GUAN L R, QIAN K, LI J X, et al. Mobilization and enrichment of iodine in groundwater from the Datong Basin: Evidences from biomarker study[J]. Geological Science and Technology Information, 2019, 38(1): 235-242 (in Chinese).
|
[11] |
张多, 谢先军, 刘文静, 等. 大同盆地地下水中溶解性有机质分子特征及其对砷迁移富集的影响[J]. 安全与环境工程, 2022, 29(5): 148-154.
ZHANG D, XIE X J, LIU W J, et al. Molecular characteristics of dissolved organic matter and its impact on arsenic mobilization and enrichment in groundwater system in Datong Basin[J]. Safety and Environmental Engineering, 2022, 29(5): 148-154 (in Chinese).
|
[12] |
王翔, 罗艳丽, 邓雯文, 等. 新疆奎屯地区高砷地下水DOM三维荧光特征[J]. 中国环境科学, 2020, 40(11): 4974-4981.
WANG X, LUO Y L, DENG W W, et al. The 3D-EEM characteristics of DOM in high arsenic groundwater of Kuitun, Xinjiang [J]. China Environmental Science, 2020, 40(11): 4974-4981 (in Chinese).
|
[13] |
王翔. 奎屯河下游区域地下水中砷的释放过程研究[D]. 乌鲁木齐: 新疆农业大学, 2021.
WANG X. Mobilization processes of arsenic in groundwater of Kuitun River downsteam[D]. Urumqi: Xinjiang Agricultural University, 2021 (in Chinese).
|
[14] |
袁翰卿, 李巧, 陶洪飞, 等. 新疆奎屯河流域地下水砷富集因素[J]. 环境化学, 2020, 39(2): 524-530.
YUAN H Q, LI Q, TAO H F, et al. Groundwater arsenic enrichment factors of Kuitun River Basin, Xinjiang[J]. Environmental Chemistry, 2020, 39(2): 524-530 (in Chinese).
|
[15] |
张坤锋, 昌盛, 付青, 等. 内蒙古东北部地区地下-地表饮用水源多环芳烃污染特征与风险[J]. 环境科学, 2022, 43(6): 3005-3015.
ZHANG K F, CHANG S, FU Q, et al. Pollution characteristics and risks of polycyclic aromatic hydrocarbons in underground and surface drinking water sources in northeast Inner Mongolia[J]. Environmental Science, 2022, 43(6): 3005-3015 (in Chinese).
|
[16] |
张坤锋, 赵少延, 孙兴滨, 等. 海拉尔河及傍河地下水饮用水源中挥发性有机物的污染特征与风险[J]. 河南师范大学学报(自然科学版), 2021, 49(5): 74-82.
ZHANG K F, ZHAO S Y, SUN X B, et al. Pollution characteristics and risks of volatile organic compounds in drinking water sources of Hailar River and nearby rivers groundwater[J]. Journal of Henan Normal University (Natural Science Edition), 2021, 49(5): 74-82 (in Chinese).
|
[17] |
MLADENOV N, ZHENG Y, MILLER M P, et al. Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers[J]. Environmental Science & Technology, 2010, 44(1): 123-128.
|
[18] |
TUFANO K J, FENDORF S. Confounding impacts of iron reduction on arsenic retention[J]. Environmental Science & Technology, 2008, 42(13): 4777-4783.
|
[19] |
贾永锋, 郭华明. 高砷地下水研究的热点及发展趋势[J]. 地球科学进展, 2013, 28(1): 51-61.
JIA Y F, GUO H M. Hot topics and trends in the study of high arsenic groundwater[J]. Advances in Earth Science, 2013, 28(1): 51-61 (in Chinese).
|
[20] |
HARVEY C F, SWARTZ C H, BADRUZZAMAN A B M, et al. Arsenic mobility and groundwater extraction in Bangladesh[J]. Science, 2002, 298(5598): 1602-1606. doi: 10.1126/science.1076978
|
[21] |
TUFANO K J, REYES C, SALTIKOV C W, et al. Reductive processes controlling arsenic retention: Revealing the relative importance of iron and arsenic reduction[J]. Environmental Science & Technology, 2008, 42(22): 8283-8289.
|
[22] |
McARTHUR J M, RAVENSCROFT P, BANERJEE D M, et al. How paleosols influence groundwater flow and arsenic pollution: A model from the Bengal Basin and its worldwide implication[J]. Water Resources Research, 2008, 44(11): W11411.
|
[23] |
HU X S, ZHOU Y Q, ZHOU L, et al. Urban and agricultural land use regulates the molecular composition and bio-lability of fluvial dissolved organic matter in human-impacted southeastern China[J]. Carbon Research, 2022, 1(1): 19. doi: 10.1007/s44246-022-00020-6
|
[24] |
SHARMA P, ROLLE M, KOCAR B, et al. Influence of natural organic matter on As transport and retention[J]. Environmental Science & Technology, 2011, 45(2): 546-553.
|
[25] |
SAADA A, BREEZE D, CROUZET C, et al. Adsorption of arsenic (V) on kaolinite and on kaolinite-humic acid complexes. Role of humic acid nitrogen groups[J]. Chemosphere, 2003, 51(8): 757-763. doi: 10.1016/S0045-6535(03)00219-4
|
[26] |
BOWELL R J. Sorption of arsenic by iron oxides and oxyhydroxides in soils[J]. Applied Geochemistry, 1994, 9(3): 279-286. doi: 10.1016/0883-2927(94)90038-8
|
[27] |
REDMAN A D, MACALADY D L, AHMANN D. Natural organic matter affects arsenic speciation and sorption onto hematite[J]. Environmental Science & Technology, 2002, 36(13): 2889-2896.
|
[28] |
LIN H T, WANG M C, LI G C. Complexation of arsenate with humic substance in water extract of compost[J]. Chemosphere, 2004, 56(11): 1105-1112. doi: 10.1016/j.chemosphere.2004.05.018
|
[29] |
孟永霞, 程艳, 李琳, 等. 匹里青河夏季有色溶解性有机质(CDOM)分布特征及来源分析[J]. 环境化学, 2020, 39(11): 3213-3222. doi: 10.7524/j.issn.0254-6108.2019080902
MENG Y X, CHENG Y, LI L, et al. Distribution characteristics and source analysis of chromophoric dissolved organic matter(CDOM) in Piliqing River in summer[J]. Environmental Chemistry, 2020, 39(11): 3213-3222 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019080902
|
[30] |
严登华, 何岩, 邓伟, 等. 满洲里市水体中氟化物的环境特征[J]. 环境科学研究, 2001, 14(1): 24-26, 30.
YAN D H, HE Y, DENG W, et al. The environmental characteristic of fluoride in the water body of Manzhouli city[J]. Research of Environmental Sciences, 2001, 14(1): 24-26, 30 (in Chinese).
|
[31] |
张宝发. 满洲里市水文地质特征[J]. 吉林地质, 2013, 32(3): 77-79, 85.
ZHANG B F. Hydrogeological characteristics of Manzhouli[J]. Jilin Geology, 2013, 32(3): 77-79, 85 (in Chinese).
|
[32] |
LAVONEN E E, KOTHAWALA D N, TRANVIK L J, et al. Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production[J]. Water Research, 2015, 85: 286-294. doi: 10.1016/j.watres.2015.08.024
|
[33] |
OHNO T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(4): 742-746.
|
[34] |
张紫薇, 周石磊, 张甜娜, 等. 岗南水库沉积物溶解性有机物光谱时空分布特征及环境意义[J]. 环境科学学报, 2021, 41(9): 3598-3611.
ZHANG Z W, ZHOU S L, ZHANG T N, et al. Spatiotemporal evolution and environmental significance of dissolved organic matter (DOM) in sediments of Gangnan Reservoir[J]. Acta Scientiae Circumstantiae, 2021, 41(9): 3598-3611 (in Chinese).
|
[35] |
HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706-719. doi: 10.1016/j.orggeochem.2009.03.002
|
[36] |
鹿帅. 傍河开采驱动下地下水中砷的生物地球化学过程与模拟研究[D]. 长春: 吉林大学, 2018.
LU S. Biogeochemical process of arsenic in groundwater and its simulation affected by groundwater exploitation in riverside[D]. Changchun: Jilin University, 2018 (in Chinese).
|
[37] |
CORY R M, McKNIGHT D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J]. Environmental Science & Technology, 2005, 39(21): 8142-8149.
|
[38] |
STEDMON C A, MARKAGER S, BRO R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry, 2003, 82(3/4): 239-254.
|
[39] |
YAMASHITA Y, KLOEPPEL B D, KNOEPP J, et al. Effects of watershed history on dissolved organic matter characteristics in headwater streams[J]. Ecosystems, 2011, 14(7): 1110-1122. doi: 10.1007/s10021-011-9469-z
|
[40] |
OSBURN C L, HANDSEL L T, MIKAN M P, et al. Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary[J]. Environmental Science & Technology, 2012, 46(16): 8628-8636.
|
[41] |
YAMASHITA Y, TANOUE E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids[J]. Marine Chemistry, 2003, 82(3/4): 255-271.
|
[42] |
王振. 青海贵德盆地高砷地下水分布和成因探究[D]. 北京: 中国地质大学(北京), 2019.
WANG Z. Distribution and genesis mechanism of high arsenic groundwater in the guide basin, Qinghai[D]. Beijing: China University of Geosciences, 2019 (in Chinese).
|
[43] |
ISLAM F S, GAULT A G, BOOTHMAN C, et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments[J]. Nature, 2004, 430(6995): 68-71. doi: 10.1038/nature02638
|
[44] |
王焰新, 苏春利, 谢先军, 等. 大同盆地地下水砷异常及其成因研究[J]. 中国地质, 2010, 37(3): 771-780.
WANG Y X, SU C L, XIE X J, et al. The genesis of high arsenic groundwater: A case study in Datong Basin[J]. Geology in China, 2010, 37(3): 771-780 (in Chinese).
|
[45] |
NICKSON R T, McARTHUR J M, RAVENSCROFT P, et al. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal[J]. Applied Geochemistry, 2000, 15(4): 403-413. doi: 10.1016/S0883-2927(99)00086-4
|
[46] |
AL LAWATI W M, RIZOULIS A, EICHE E, et al. Characterisation of organic matter and microbial communities in contrasting arsenic-rich Holocene and arsenic-poor Pleistocene aquifers, Red River Delta, Vietnam[J]. Applied Geochemistry, 2012, 27(1): 315-325. doi: 10.1016/j.apgeochem.2011.09.030
|
[47] |
POSTMA D, LARSEN F, MINH HUE N T, et al. Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling[J]. Geochimica et Cosmochimica Acta, 2007, 71(21): 5054-5071. doi: 10.1016/j.gca.2007.08.020
|