[1] |
阳安迪, 肖细元, 郭朝晖, 等. 模拟酸雨下铅锌冶炼废渣重金属的静态释放特征[J]. 中国环境科学, 2021, 41(12): 5755-5763. doi: 10.19674/j.cnki.issn1000-6923.20210508.004
YANG A D, XIAO X Y, GUO Z H, et al. Static release characteristics of heavy metals from lead-zinc smelting slag leached by simulated acid rain[J]. China Environmental Science, 2021, 41(12): 5755-5763 (in Chinese). doi: 10.19674/j.cnki.issn1000-6923.20210508.004
|
[2] |
李强, 何连生, 王耀锋, 等. 中国冶炼行业场地土壤污染特征及分布情况[J]. 生态环境学报, 2021, 30(3): 586-595.
LI Q, HE L S, WANG Y F, et al. The characteristics and distribution of soil pollution in smelting industry sites in China [J]. Ecology and Environmental Sciences, 2021, 30( 3): 586- 595 (in Chinese).
|
[3] |
XU D, FU R, LIU H, et al. Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review[J]. Journal of Cleaner Production, 2021, 286: 124989. doi: 10.1016/j.jclepro.2020.124989
|
[4] |
KE W, ZENG J, ZHU F, et al. Geochemical partitioning and spatial distribution of heavy metals in soils contaminated by lead smelting[J]. Environmental Pollution, 2022, 307: 119486. doi: 10.1016/j.envpol.2022.119486
|
[5] |
他维媛, 康桢, 孟昭君, 等. 秦岭典型停产关闭锌冶炼企业场地土壤重金属污染特征研究[J]. 生态环境学报, 2021, 30(07): 1513-1521.
TA W Y, KANG Z, MENG Z J, et al. Research of pollution characteristics of heavy metals in soil of typical closed zinc smelting enterprises in Qinling Mountains [J]. Ecology and Environmental Sciences, 2021, 30(7): 1513-1521 (in Chinese).
|
[6] |
LI S, ZHAO B, JIN M, et al. A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter[J]. Journal of Hazardous Materials, 2020, 400: 123255. doi: 10.1016/j.jhazmat.2020.123255
|
[7] |
XU L, DAI H, SKUZA L, et al. Comprehensive exploration of heavy metal contamination and risk assessment at two common smelter sites[J]. Chemosphere, 2021, 285: 131350. doi: 10.1016/j.chemosphere.2021.131350
|
[8] |
YANG J, GUO Z, JIANG L, et al. Cadmium, lead and arsenic contamination in an abandoned nonferrous metal smelting site in southern China: Chemical speciation and mobility[J]. Ecotoxicology and Environmental Safety, 2022, 239: 113617. doi: 10.1016/j.ecoenv.2022.113617
|
[9] |
RODRÍGUEZ L, RUIZ E, ALONSO-AZCÁRATE J, et al. Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain[J]. Journal of Environmental Management, 2009, 90(2): 1106-1116. doi: 10.1016/j.jenvman.2008.04.007
|
[10] |
陈任连, 蔡茜茜, 周丽华, 等. 甘肃某冶炼厂区土壤重金属铅、镉污染特征及其对微生物群落结构的影响[J]. 生态环境学报, 2021, 30(3): 596-603.
CHEN R L, CAI X X, ZHOU L H, et al. Characteristics of soil contamination with heavy metals (Pb and Cd) in a smelting plant of Gansu and their effects on microbial community structure [J]. Ecology and Environmental Sciences, 2021, 30(3): 596-603 (in Chinese).
|
[11] |
LI F, FAN Z, XIAO P, et al. Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China[J]. Environmental Geology, 2009, 57(8): 1815-1823. doi: 10.1007/s00254-008-1469-8
|
[12] |
ZHONG X, CHEN Z, LI Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J]. Journal of Hazardous Materials, 2020, 400: 123289. doi: 10.1016/j.jhazmat.2020.123289
|
[13] |
杨元根, 刘丛强, 张国平, 等. 铅锌矿山开发导致的重金属在环境介质中的积累[J]. 矿物岩石地球化学通报, 2003(4): 305-309.
YANG Y G, LIU C Q, ZHANG G P, et al. Heavy metal accumulations in environmental media induced by lead and zinc mine development[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2003(4): 305-309 (in Chinese).
|
[14] |
刘凌青, 肖细元, 郭朝晖, 等. 锌冶炼地块剖面土壤对镉、铅的吸附特征及机制[J]. 环境科学, 2021, 42(8): 4015-4023.
Liu L Q, XIAO X Y, GUO Z H, et al. Adsorption characteristics and mechanism of Cd and Pb in tiered soil profiles from a zinc smelting site[J]. Environmental Science, 2021, 42(8): 4015-4023 (in Chinese).
|
[15] |
Di SANTE M, MAZZIERI F, PASQUALINI E. Assessment of the sanitary and environmental risks posed by a contaminated industrial site[J]. Journal of Hazardous Materials, 2009, 171(1-3): 524-534. doi: 10.1016/j.jhazmat.2009.05.145
|
[16] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
LU R K. Methods for agricultural chemical analysis of soil[M]. Methods for agricultural chemical analysis of soil, 2000 (in Chinese).
|
[17] |
SHI L, GUO Z, LIU S. Effects of combined soil amendments on Cd accumulation, translocation and food safety in rice: a field study in southern China[J]. Environmental Geochemistry and Health, 2022, 44(8): 2451-2463.
|
[18] |
DAVIDSON C M, DUNCAN A L, LITTLEJOHN D, et al. A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land[J]. Analytica Chimica Acta, 1998, 363(1):45-55.
|
[19] |
GUO Z, ZHANG Y, XU R, et al. Contamination vertical distribution and key factors identification of metal(loid)s in site soil from an abandoned Pb/Zn smelter using machine learning[J]. Science of The Total Environment, 2023, 856: 159264. doi: 10.1016/j.scitotenv.2022.159264
|
[20] |
ZHANG X Y, LIN F F, WONG M T F, et al. Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County, China[J]. Environmental Monitoring and Assessment, 2009, 154(1-4): 439-449. doi: 10.1007/s10661-008-0410-7
|
[21] |
郭佳雯, 廖敏, 谢晓梅, 等. 铅锌冶炼厂冶炼渣淋溶释放的铅在红壤中垂直迁移特征[J]. 环境污染与防治, 2021, 43(8): 990-996, 1009.
GUO J W, LIAO M, XIE X M, et al. Characteristics of vertical migration of Pb released from smelting slag of lead-zinc smelter in red soil area[J]. Environmental Pollution & Control, 2021, 43(8): 990-996, 1009 (in Chinese).
|
[22] |
龙永珍, 戴塔根, 邹海洋. 长沙、株洲、湘潭地区土壤重金属污染现状及评价[J]. 地球与环境, 2008(3): 231-236.
LONG Y Z, DAI T G, ZOU H Y. The status quo and evaluation of heavy metal pollution of soils in the Changsha, Zhuzhou and Xiangtan areas[J]. Earth and Environment, 2008, 36(3) : 231-236 ( in Chinese) .
|
[23] |
李勖之, 姜瑢, 孙丽, 等. 不同国家土壤生态筛选值比较与启示[J]. 环境化学, 2022, 41(3): 1001-1010.
LI X Z, JIANG R, SUN L, et al. Ecological soil screening values among different countries and implication for China[J]. Environmental Chemistry, 2022, 41 (3): 1001-1010 (in Chinese).
|
[24] |
OKONKWO S I, IDAKWO S O, AMEH E G. Heavy metal contamination and ecological risk assessment of soils around the pegmatite mining sites at Olode area, Ibadan southwestern Nigeria[J]. Environmental Nanotechnology, Monitoring & Management, 2021, 15: 100424.
|
[25] |
陈丹丹, 谭璐, 聂紫萌, 等. 湖南典型金属冶炼与采选行业企业周边土壤重金属污染评价及源解析[J]. 环境化学, 2021, 40(9): 2667-2679. doi: 10.7524/j.issn.0254-6108.2021010901
CHEN D D, TAN L, NIE Z M, et al. Evaluation and source analysis of heavy metal pollution in the soil around typical metal smelting and mining enterprises in Hunan Province[J]. Environmental Chemistry, 2021, 40 (9): 2667-2679 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021010901
|
[26] |
ZENG J, LUO X, CHENG Y, et al. Spatial distribution of toxic metal(loid)s at an abandoned zinc smelting site, Southern China. [J]. Journal of Hazardous Materials, 2022, 425: 127970. doi: 10.1016/j.jhazmat.2021.127970
|
[27] |
TIBANE L V, MAMBA D. Ecological risk of trace metals in soil from gold mining region in South Africa[J]. Journal of Hazardous Materials Advances, 2022, 7: 100118. doi: 10.1016/j.hazadv.2022.100118
|
[28] |
STERCKEMAN T, DOUAY F, PROIX N, et al. Vertical distribution of Cd, Pb and Zn in soils near smelters in the north of France[J]. Environmental Pollution , 2000, 107(3): 377-389. doi: 10.1016/S0269-7491(99)00165-7
|
[29] |
LI P, LIN C, CHENG H, et al. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China[J]. Ecotoxicology and Environmental Safety, 2015, 113: 391-399. doi: 10.1016/j.ecoenv.2014.12.025
|
[30] |
GUO Z, YANG J, SARKODIE E K, et al. Vertical distribution of the toxic metal(loid)s chemical fraction and microbial community in waste heap at a nonferrous metal mining site[J]. Ecotoxicology and Environmental Safety, 2021, 228: 113037. doi: 10.1016/j.ecoenv.2021.113037
|
[31] |
YU Z, LIU E, LIN Q, et al. Comprehensive assessment of heavy metal pollution and ecological risk in lake sediment by combining total concentration and chemical partitioning[J]. Environmental Pollution, 2021, 269: 116212. doi: 10.1016/j.envpol.2020.116212
|
[32] |
LIU W, HU T, MAO Y, et al. The mechanistic investigation of geochemical fractionation, bioavailability and release kinetic of heavy metals in contaminated soil of a typical copper-smelter[J]. Environmental Pollution, 2022, 306: 119391. doi: 10.1016/j.envpol.2022.119391
|
[33] |
DU H, LI Y, WAN D, et al. Tungsten distribution and vertical migration in soils near a typical abandoned tungsten smelter[J]. Journal of Hazardous Materials, 2022, 429: 128292. doi: 10.1016/j.jhazmat.2022.128292
|
[34] |
ZHONG Q, YIN M, ZHANG Q, et al. Cadmium isotopic fractionation in lead-zinc smelting process and signatures in fluvial sediments[J]. Journal of Hazardous Materials, 2021, 411: 125015. doi: 10.1016/j.jhazmat.2020.125015
|
[35] |
KANG M, YU S, JEON S W, et al. Mobility of metal(loid)s in roof dusts and agricultural soils surrounding a Zn smelter: Focused on the impacts of smelter-derived fugitive dusts[J]. Science of The Total Environment, 2021, 757: 143884. doi: 10.1016/j.scitotenv.2020.143884
|
[36] |
TUHÝ M, HRSTKA T, ETTLER V. Automated mineralogy for quantification and partitioning of metal(loid)s in particulates from mining/smelting-polluted soils[J]. Environmental Pollution, 2020, 266: 115118. doi: 10.1016/j.envpol.2020.115118
|
[37] |
XU D, FU R. A typical case study from smelter–contaminated soil: new insights into the environmental availability of heavy metals using an integrated mineralogy characterization[J]. Environmental Science and Pollution Research, 2022, 29(38): 57296-57305. doi: 10.1007/s11356-022-19823-6
|
[38] |
LIN H, TANG Y, DONG Y, et al. Characterization of heavy metal migration, the microbial community, and potential bioremediating genera in a waste-rock pile field of the largest copper mine in Asia[J]. Journal of Cleaner Production, 2022, 351: 131569. doi: 10.1016/j.jclepro.2022.131569
|
[39] |
BUATIER M D, SOBANSKA S, ELSASS F. TEM-EDX investigation on Zn- and Pb-contaminated soils[J]. Applied Geochemistry, 2001, 16(9): 1165-1177.
|
[40] |
BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266: 141-166. doi: 10.1016/j.jhazmat.2013.12.018
|
[41] |
SHAHEEN S M, TSADILAS C D, RINKLEBE J. A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties[J]. Advances in Colloid and Interface Science, 2013, 201-202: 43-56. doi: 10.1016/j.cis.2013.10.005
|
[42] |
LI Y, LIU J, WANG Y, et al. Contribution of components in natural soil to Cd and Pb competitive adsorption: Semi-quantitative to quantitative analysis[J]. Journal of Hazardous Materials, 2023, 441: 129883. doi: 10.1016/j.jhazmat.2022.129883
|
[43] |
KUBIER A, WILKIN R T, PICHLER T. Cadmium in soils and groundwater: A review[J]. Applied Geochemistry, 2019, 108: 104388. doi: 10.1016/j.apgeochem.2019.104388
|
[44] |
MILER M, GOSAR M. Characteristics and potential environmental influences of mine waste in the area of the closed Mežica Pb–Zn mine (Slovenia)[J]. Journal of Geochemical Exploration, 2012, 112: 152-160. doi: 10.1016/j.gexplo.2011.08.012
|
[45] |
WILSON S C, LOCKWOOD P V, ASHLEY P M, et al. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review[J]. Environmental Pollution, 2010, 158(5): 1169-1181. doi: 10.1016/j.envpol.2009.10.045
|
[46] |
王璐莹, 秦雷, 吕宪国, 等. 铁促进土壤有机碳累积作用研究进展[J]. 土壤学报, 2018, 55(5): 1041-1050.
WANG L Y, QIN L, LV X G, et al. Progress in researches on effect of iron promoting accumulation of soil organic carbon[J]. Acta Pedologica Sinica, 2018, 55(5): 1041-1050 (in Chinese).
|