[1] |
LINDSTROM A B, STRYNAR M J, LIBELO E L. Polyfluorinated compounds: Past, present, and future[J]. Environmental Science & Technology, 2011, 45(19): 7954-7961.
|
[2] |
ABUNADA Z, ALAZAIZA M Y D, BASHIR M J K. An overview of per- and polyfluoroalkyl substances (PFAS) in the environment: Source, fate, risk and regulations[J]. Water, 2020, 12(12): 3590. doi: 10.3390/w12123590
|
[3] |
ZENG Z T, SONG B, XIAO R, et al. Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies[J]. Environment International, 2019, 126: 598-610. doi: 10.1016/j.envint.2019.03.002
|
[4] |
HOLMQUIST H, FANTKE P, COUSINS I T, et al. An (eco)toxicity life cycle impact assessment framework for per- and polyfluoroalkyl substances[J]. Environmental Science & Technology, 2020, 54(10): 6224-6234.
|
[5] |
WANG T, WANG Y W, LIAO C Y, et al. Perspectives on the inclusion of perfluorooctane sulfonate into the stockholm convention on persistent organic pollutants[J]. Environmental Science & Technology, 2009, 43(14): 5171-5175.
|
[6] |
CHEN M, ZHU L Y, WANG Q, et al. Tissue distribution and bioaccumulation of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in edible fishes from Taihu Lake, China[J]. Environmental Pollution, 2021, 268: 115887. doi: 10.1016/j.envpol.2020.115887
|
[7] |
中华人民共和国生态环境部. 关于禁止生产、流通、使用和进出口林丹等持久性有机污染物的公告[EB/OL].
|
[8] |
WANG Z Y, COUSINS I T, SCHERINGER M, et al. Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions[J]. Environment International, 2015, 75: 172-179. doi: 10.1016/j.envint.2014.11.013
|
[9] |
GAO K, MIAO X, FU J, et al. Occurrence and trophic transfer of per- and polyfluoroalkyl substances in an Antarctic ecosystem[J]. Environmental Pollution, 2020, 257: 113383. doi: 10.1016/j.envpol.2019.113383
|
[10] |
MENG J, LIU S F, ZHOU Y Q, et al. Are perfluoroalkyl substances in water and fish from drinking water source the major pathways towards human health risk?[J]. Ecotoxicology and Environmental Safety, 2019, 181: 194-201. doi: 10.1016/j.ecoenv.2019.06.010
|
[11] |
MÖLLER A, AHRENS L, SURM R, et al. Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed[J]. Environmental Pollution, 2010, 158(10): 3243-3250. doi: 10.1016/j.envpol.2010.07.019
|
[12] |
ALI A M, SANDEN M, HIGGINS C P, et al. Legacy and emerging per- and polyfluorinated alkyl substances (PFASs) in sediment and edible fish from the Eastern Red Sea[J]. Environmental Pollution, 2021, 280: 116935. doi: 10.1016/j.envpol.2021.116935
|
[13] |
LIU W, LI J W, GAO L C, et al. Bioaccumulation and effects of novel chlorinated polyfluorinated ether sulfonate in freshwater Alga Scenedesmus obliquus[J]. Environmental Pollution, 2018, 233: 8-15. doi: 10.1016/j.envpol.2017.10.039
|
[14] |
WANG S W, HUANG J, YANG Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years: Its toxicity, persistence, and presence in the environment[J]. Environmental Science & Technology, 2013, 47(18): 10163-10170.
|
[15] |
WANG Y, CHANG W G, WANG L, et al. A review of sources, multimedia distribution and health risks of novel fluorinated alternatives[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109402. doi: 10.1016/j.ecoenv.2019.109402
|
[16] |
SAVOCA D, PACE A. Bioaccumulation, biodistribution, toxicology and biomonitoring of organofluorine compounds in aquatic organisms[J]. International Journal of Molecular Sciences, 2021, 22(12): 6276. doi: 10.3390/ijms22126276
|
[17] |
ZHAO Y G, WAN H T, LAW A Y S, et al. Risk assessment for human consumption of perfluorinated-compound-contaminated freshwater and marine fish from Hong Kong and Xiamen[J]. Chemosphere, 2011, 85(2): 277-283. doi: 10.1016/j.chemosphere.2011.06.002
|
[18] |
杨永亮, 路国慧, 杨伟贤, 等. 沈阳地区水环境和生物样品中全氟化合物的污染分布特征[J]. 环境科学学报, 2010, 30(10): 2097-2107.
YANG Y L, LU G H, YEUNG L W, et al. Levels and distribution of perfluorinated compounds in water and biological samples from the Shenyang area, China[J]. Acta Scientiae Circumstantiae, 2010, 30(10): 2097-2107 (in Chinese).
|
[19] |
巩秀贤, 李斌, 柳玉英, 等. 浑河-大辽河水系水体与沉积物中典型全氟化合物的污染水平及生态风险评价[J]. 环境科学学报, 2015, 35(7): 2177-2184.
GONG X X, LI B, LIU Y Y, et al. Pollution levels and ecological risk assessment of typical perfluorinated compounds in riverine water and sediments of Hun River and Daliao River Watershed[J]. Acta Scientiae Circumstantiae, 2015, 35(7): 2177-2184 (in Chinese).
|
[20] |
BAO J, LIU W, LIU L, et al. Perfluorinated compounds in the environment and the blood of residents living near fluorochemical plants in Fuxin, China[J]. Environmental Science & Technology, 2011, 45(19): 8075-8080.
|
[21] |
HAUG L S, THOMSEN C, BRANTSÆTER A L, et al. Diet and particularly seafood are major sources of perfluorinated compounds in humans[J]. Environment International, 2010, 36(7): 772-778. doi: 10.1016/j.envint.2010.05.016
|
[22] |
刘嘉烈, 石运刚, 唐娜, 等. 重庆长江流域鲫鱼和沉积物中17种全氟化合物污染特征[J]. 环境化学, 2020, 39(12): 3450-3461. doi: 10.7524/j.issn.0254-6108.2020061702
LIU J L, SHI Y G, TANG N, et al. Pollution characteristics of seventeen per- and polyfluoroalkyl substances in fish and sediments of Yangtze River Basin in Chongqing City[J]. Environmental Chemistry, 2020, 39(12): 3450-3461(in Chinese). doi: 10.7524/j.issn.0254-6108.2020061702
|
[23] |
DIAO J Y, CHEN Z W, WANG Y T, et al. Perfluoroalkyl substances in marine food webs from South China Sea: Trophic transfer and human exposure implication[J]. Journal of Hazardous Materials, 2022, 431: 128602. doi: 10.1016/j.jhazmat.2022.128602
|
[24] |
段小丽, 赵秀阁, 王丽敏, 等. 中国人群暴露参数手册, 成人卷[M]. 北京: 环境保护部, 2013.
DUAN X L, ZHAO X L, WANG L M, et al. Handbook of Exposure Parameters for Chinese Populations, Adult Volume[M]. Beijing: Department of Environmental Protection, 2013 (in Chinese).
|
[25] |
段小丽, 赵秀阁. 中国人群暴露参数手册(儿童卷6-17岁)[M]. 北京: 环境保护部, 2016.
DUAN X L, ZHAO X G. Handbook of Exposure Parameters for Chinese Populations (Children's Volume 6-17 Years)[M]. Beijing: Department of Environmental Protection, 2016 (in Chinese).
|
[26] |
SUN Q P, BI R, WANG T Y, et al. Are there risks induced by novel and legacy poly- and perfluoroalkyl substances in coastal aquaculture base in South China?[J]. Science of the Total Environment, 2021, 779: 146539. doi: 10.1016/j.scitotenv.2021.146539
|
[27] |
JIN Q, SHI Y L, CAI Y Q. Occurrence and risk of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) in seafood from markets in Beijing, China[J]. Science of the Total Environment, 2020, 726: 138538. doi: 10.1016/j.scitotenv.2020.138538
|
[28] |
ARINAITWE K, KOCH A, TAABU-MUNYAHO A, et al. Spatial profiles of perfluoroalkyl substances and mercury in fish from northern Lake Victoria, East Africa[J]. Chemosphere, 2020, 260: 127536. doi: 10.1016/j.chemosphere.2020.127536
|
[29] |
LIN X P, WANG S Q, LI Q, et al. Occurrence, partitioning behavior and risk assessments of per- and polyfluoroalkyl substances in water, sediment and biota from the Dongshan Bay, China[J]. Chemosphere, 2022, 291: 132812. doi: 10.1016/j.chemosphere.2021.132812
|
[30] |
PAN C G, XIAO S K, YU K F, et al. Legacy and alternative per- and polyfluoroalkyl substances in a subtropical marine food web from the Beibu Gulf, South China: Fate, trophic transfer and health risk assessment[J]. Journal of Hazardous Materials, 2021, 403: 123618. doi: 10.1016/j.jhazmat.2020.123618
|
[31] |
WANG S Q, CAI Y Z, MA L Y, et al. Perfluoroalkyl substances in water, sediment, and fish from a subtropical river of China: Environmental behaviors and potential risk[J]. Chemosphere, 2022, 288: 132513. doi: 10.1016/j.chemosphere.2021.132513
|
[32] |
VI P T, NGOC N T, QUANG P D, et al. Perfluoroalkyl substances in freshwater and marine fish from northern Vietnam: Accumulation levels, profiles, and implications for human consumption[J]. Marine Pollution Bulletin, 2022, 182: 113995. doi: 10.1016/j.marpolbul.2022.113995
|
[33] |
GOODROW S M, RUPPEL B, LIPPINCOTT R L, et al. Investigation of levels of perfluoroalkyl substances in surface water, sediment and fish tissue in New Jersey, USA[J]. Science of the Total Environment, 2020, 729: 138839. doi: 10.1016/j.scitotenv.2020.138839
|
[34] |
ZHU Z Y, WANG T Y, MENG J, et al. Perfluoroalkyl substances in the Daling River with concentrated fluorine industries in China: Seasonal variation, mass flow, and risk assessment[J]. Environmental Science and Pollution Research, 2015, 22(13): 10009-10018. doi: 10.1007/s11356-015-4189-0
|
[35] |
WANG P, LU Y L, WANG T Y, et al. Transport of short-chain perfluoroalkyl acids from concentrated fluoropolymer facilities to the Daling River Estuary, China[J]. Environmental Science and Pollution Research, 2015, 22(13): 9626-9636. doi: 10.1007/s11356-015-4090-x
|
[36] |
WANG P, LU Y L, SU H Q, et al. Managing health risks of perfluoroalkyl acids in aquatic food from a river-estuary-sea environment affected by fluorochemical industry[J]. Environment International, 2020, 138: 105621. doi: 10.1016/j.envint.2020.105621
|
[37] |
叶洪丽, 余玮玥, 史永富, 等. 东海沿岸省市鱼类水产品中全氟烷基化合物含量调查研究[J]. 中国渔业质量与标准, 2019, 9(4): 13-21.
YE H L, YU W Y, SHI Y F, et al. Investigation and study of perfluorinated alkylated substances in fish aquatic products in the East China Sea area[J]. Chinese Fishery Quality and Standards, 2019, 9(4): 13-21(in Chinese).
|
[38] |
王旭峰, 王强, 黎智广, 等. 广州市售水产品中全氟烷基化合物的污染特征和安全风险评价[J]. 环境科学, 2019, 40(4): 1931-1938.
WANG X F, WANG Q, LI Z G, et al. Contamination characteristics and safety risk assessment of perflurorinated alkylated substances in aquatic products from Guangzhou[J]. Environmental Science, 2019, 40(4): 1931-1938(in Chinese).
|
[39] |
CHEN H, HAN J B, CHENG J Y, et al. Distribution, bioaccumulation and trophic transfer of chlorinated polyfluoroalkyl ether sulfonic acids in the marine food web of Bohai, China[J]. Environmental Pollution, 2018, 241: 504-510. doi: 10.1016/j.envpol.2018.05.087
|
[40] |
SHI Y L, VESTERGREN R, ZHOU Z, et al. Tissue distribution and whole body burden of the chlorinated polyfluoroalkyl ether sulfonic acid F-53B in crucian carp (Carassius carassius): Evidence for a highly bioaccumulative contaminant of emerging concern[J]. Environmental Science & Technology, 2015, 49(24): 14156-14165.
|
[41] |
CUI Q Q, PAN Y T, ZHANG H X, et al. Elevated concentrations of perfluorohexanesulfonate and other per- and polyfluoroalkyl substances in Baiyangdian Lake (China): Source characterization and exposure assessment[J]. Environmental Pollution, 2018, 241: 684-691. doi: 10.1016/j.envpol.2018.05.099
|
[42] |
RUAN T, LIN Y F, WANG T, et al. Identification of novel polyfluorinated ether sulfonates as PFOS alternatives in municipal sewage sludge in China[J]. Environmental Science & Technology, 2015, 49(11): 6519-6527.
|
[43] |
SHI Y L, VESTERGREN R, XU L, et al. Human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs)[J]. Environmental Science & Technology, 2016, 50(5): 2396-2404.
|
[44] |
LIU Y W, RUAN T, LIN Y F, et al. Chlorinated polyfluoroalkyl ether sulfonic acids in marine organisms from Bohai Sea, China: Occurrence, temporal variations, and trophic transfer behavior[J]. Environmental Science & Technology, 2017, 51(8): 4407-4414.
|
[45] |
BIRGERSSON L, JOUVE J, JÖNSSON E, et al. Thyroid function and immune status in perch (Perca fluviatilis) from lakes contaminated with PFASs or PCBs[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112495. doi: 10.1016/j.ecoenv.2021.112495
|
[46] |
BERGER U, GLYNN A, HOLMSTRÖM K E, et al. Fish consumption as a source of human exposure to perfluorinated alkyl substances in Sweden - analysis of edible fish from Lake Vättern and the Baltic Sea[J]. Chemosphere, 2009, 76(6): 799-804. doi: 10.1016/j.chemosphere.2009.04.044
|
[47] |
YAMADA A, BEMRAH N, VEYRAND B, et al. Perfluoroalkyl acid contamination and polyunsaturated fatty acid composition of French freshwater and marine fishes[J]. Journal of Agricultural and Food Chemistry, 2014, 62(30): 7593-7603. doi: 10.1021/jf501113j
|
[48] |
ÅKERBLOM S, NEGM N, WU P P, et al. Variation and accumulation patterns of poly- and perfluoroalkyl substances (PFAS) in European perch (Perca fluviatilis) across a gradient of pristine Swedish lakes[J]. Science of the Total Environment, 2017, 599/600: 1685-1692. doi: 10.1016/j.scitotenv.2017.05.032
|
[49] |
AHRENS L, NORSTRÖM K, VIKTOR T, et al. Stockholm Arlanda Airport as a source of per- and polyfluoroalkyl substances to water, sediment and fish[J]. Chemosphere, 2015, 129: 33-38. doi: 10.1016/j.chemosphere.2014.03.136
|
[50] |
PREVEDOUROS K, COUSINS I T, BUCK R C, et al. Sources, fate and transport of perfluorocarboxylates[J]. Environmental Science & Technology, 2006, 40(1): 32-44.
|
[51] |
XIAO F, HALBACH T R, SIMCIK M F, et al. Input characterization of perfluoroalkyl substances in wastewater treatment plants: Source discrimination byexploratory data analysis[J]. Water Research, 2012, 46(9): 3101-3109. doi: 10.1016/j.watres.2012.03.027
|
[52] |
OLSEN G W, CHANG S C, NOKER P E, et al. A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and humans[J]. Toxicology, 2009, 256(1/2): 65-74.
|
[53] |
HERZKE D, OLSSON E, POSNER S. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway–A pilot study[J]. Chemosphere, 2012, 88(8): 980-987. doi: 10.1016/j.chemosphere.2012.03.035
|
[54] |
WANG Z Y, COUSINS I T, SCHERINGER M, et al. Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: Production and emissions from quantifiable sources[J]. Environment International, 2014, 70: 62-75. doi: 10.1016/j.envint.2014.04.013
|
[55] |
LIN Y, JIANG J J, RODENBURG L A, et al. Perfluoroalkyl substances in sediments from the Bering Sea to the western Arctic: Source and pathway analysis[J]. Environment International, 2020, 139: 105699. doi: 10.1016/j.envint.2020.105699
|
[56] |
LIU Y Q, ZHANG Y, LI J F, et al. Distribution, partitioning behavior and positive matrix factorization-based source analysis of legacy and emerging polyfluorinated alkyl substances in the dissolved phase, surface sediment and suspended particulate matter around coastal areas of Bohai Bay, China[J]. Environmental Pollution, 2019, 246: 34-44. doi: 10.1016/j.envpol.2018.11.113
|
[57] |
GEBBINK W A, van LEEUWEN S P J. Environmental contamination and human exposure to PFASs near a fluorochemical production plant: Review of historic and current PFOA and GenX contamination in the Netherlands[J]. Environment International, 2020, 137: 105583. doi: 10.1016/j.envint.2020.105583
|
[58] |
XIE L N, WANG X C, DONG X J, et al. Concentration, spatial distribution, and health risk assessment of PFASs in serum of teenagers, tap water and soil near a Chinese fluorochemical industrial plant[J]. Environment International, 2021, 146: 106166. doi: 10.1016/j.envint.2020.106166
|
[59] |
BEESOON S, GENUIS S J, BENSKIN J P, et al. Exceptionally high serum concentrations of perfluorohexanesulfonate in a Canadian family are linked to home carpet treatment applications[J]. Environmental Science & Technology, 2012, 46(23): 12960-12967.
|
[60] |
KOTTHOFF M, MÜLLER J, JÜRLING H, et al. Perfluoroalkyl and polyfluoroalkyl substances in consumer products[J]. Environmental Science and Pollution Research, 2015, 22(19): 14546-14559. doi: 10.1007/s11356-015-4202-7
|
[61] |
WANG P, WANG T Y, GIESY J P, et al. Perfluorinated compounds in soils from Liaodong Bay with concentrated fluorine industry parks in China[J]. Chemosphere, 2013, 91(6): 751-757. doi: 10.1016/j.chemosphere.2013.02.017
|
[62] |
刘承友, 刘金林, 郭婧, 等. 大伙房水库多介质中全氟化合物赋存特征、源解析及健康风险评估[J]. 环境监控与预警, 2022, 14(5): 133-142.
LIU C Y, LIU J L, GUO J, et al. Occurrence characteristics, source analysis and health risk assessment of perfluorinated compounds in multi-media of Dahuofang Reservoir[J]. Environmental Monitoring and Forewarning, 2022, 14(5): 133-142 (in Chinese).
|
[63] |
FAIR P A, WOLF B, WHITE N D, et al. Perfluoroalkyl substances (PFASs) in edible fish species from Charleston Harbor and tributaries, South Carolina, United States: Exposure and risk assessment[J]. Environmental Research, 2019, 171: 266-277. doi: 10.1016/j.envres.2019.01.021
|
[64] |
HUNG M D, LAM N H, JEONG H H, et al. Perfluoroalkyl substances (PFASs) in ten edible freshwater fish species from major rivers and lakes in Korea: Distribution and human exposure by consumption[J]. Toxicology and Environmental Health Sciences, 2018, 10(5): 307-320. doi: 10.1007/s13530-018-0379-8
|
[65] |
LEE J W, LEE H K, LIM J E, et al. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in the coastal environment of Korea: Occurrence, spatial distribution, and bioaccumulation potential[J]. Chemosphere, 2020, 251: 126633. doi: 10.1016/j.chemosphere.2020.126633
|
[66] |
ZHANG Y, LIU X D, YU L, et al. Perfluoroalkyl acids in representative edible aquatic species from the Lower Yangtze River: Occurrence, distribution, sources, and health risk[J]. Journal of Environmental Management, 2022, 317: 115390. doi: 10.1016/j.jenvman.2022.115390
|