[1] |
LEHMLER H J. Synthesis of environmentally relevant fluorinated surfactants—a review[J]. Chemosphere, 2005, 58(11): 1471-1496. doi: 10.1016/j.chemosphere.2004.11.078
|
[2] |
WANG S Q, DING G H, LIU Y H, et al. Legacy and emerging persistent organic pollutants in the marginal seas of China: Occurrence and phase partitioning[J]. The Science of the Total Environment, 2022, 827: 154274. doi: 10.1016/j.scitotenv.2022.154274
|
[3] |
ZHOU J, LI S J, LIANG X X, et al. First report on the sources, vertical distribution and human health risks of legacy and novel per- and polyfluoroalkyl substances in groundwater from the Loess Plateau, China[J]. Journal of Hazardous Materials, 2021, 404: 124134. doi: 10.1016/j.jhazmat.2020.124134
|
[4] |
HAN T Z, GAO L Y, CHEN J H, et al. Spatiotemporal variations, sources and health risk assessment of perfluoroalkyl substances in a temperate bay adjacent to metropolis, North China[J]. Environmental Pollution, 2020, 265(Pt A): 115011.
|
[5] |
MA D H, ZHONG H F, LV J T, et al. Levels, distributions, and sources of legacy and novel per- and perfluoroalkyl substances (PFAS) in the topsoil of Tianjin, China[J]. Journal of Environmental Sciences, 2022, 112: 71-81. doi: 10.1016/j.jes.2021.04.029
|
[6] |
WANG S Q, LIN X P, LI Q, et al. Neutral and ionizable per-and polyfluoroalkyl substances in the urban atmosphere: Occurrence, sources and transport[J]. Science of the Total Environment, 2022, 823: 153794. doi: 10.1016/j.scitotenv.2022.153794
|
[7] |
LI F S, SUN H W, HAO Z N, et al. Perfluorinated compounds in Haihe River and Dagu drainage canal in Tianjin, China[J]. Chemosphere, 2011, 84(2): 265-271. doi: 10.1016/j.chemosphere.2011.03.060
|
[8] |
Krafft M P, Riess J G. Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability—part one [J]. Chemosphere, 2015, 129: 4-19. doi: 10.1016/j.chemosphere.2014.08.039
|
[9] |
SHI G H, CUI Q Q, PAN Y T, et al. 6: 2 fluorotelomer carboxylic acid (6: 2 FTCA) exposure induces developmental toxicity and inhibits the formation of erythrocytes during zebrafish embryogenesis[J]. Aquatic Toxicology, 2017, 190: 53-61. doi: 10.1016/j.aquatox.2017.06.023
|
[10] |
WANG N, SZOSTEK B, BUCK R C, et al. Fluorotelomer alcohol biodegradation-direct evidence that perfluorinated carbon chains breakdown[J]. Environmental Science & Technology, 2005, 39(19): 7516-7528.
|
[11] |
ELLIS D A, MARTIN J W, de SILVA A O, et al. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids[J]. Environmental Science & Technology, 2004, 38(12): 3316-3321.
|
[12] |
CHEN H R, PENG H, YANG M, et al. Detection, occurrence, and fate of fluorotelomer alcohols in municipal wastewater treatment plants[J]. Environmental Science & Technology, 2017, 51(16): 8953-8961.
|
[13] |
LOEWEN M, HALLDORSON T, WANG F Y, et al. Fluorotelomer carboxylic acids and PFOS in rainwater from an urban center in Canada[J]. Environmental Science & Technology, 2005, 39(9): 2944-2951.
|
[14] |
ERIKSSON U, KÄRRMAN A. World-wide indoor exposure to polyfluoroalkyl phosphate esters (PAPs) and other PFASs in household dust[J]. Environmental Science & Technology, 2015, 49(24): 14503-14511.
|
[15] |
ZHAO Z, YUE L X, QIAO H Q, et al. Perfluoroalkyl acids in dust on residential indoor/outdoor window glass in Chinese Cities: Occurrence, composition, and toddler exposure[J]. Environmental Science and Pollution Research, 2022, 29(10): 13881-13892. doi: 10.1007/s11356-021-16653-w
|
[16] |
ZHAO Z, CHENG X H, HUA X, et al. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers[J]. Environmental Pollution, 2020, 263(Pt A): 114391.
|
[17] |
李琦路, 程相会, 赵祯, 等. 黄河中游(渭南—郑州段)全/多氟烷基化合物的分布及通量[J]. 环境科学, 2019, 40(1): 228-238. doi: 10.13227/j.hjkx.201805240
LI Q L, CHENG X H, ZHAO Z, et al. Distribution and fluxes of perfluoroalkyl and polyfluoroalkyl substances in the middle reaches of the Yellow River(Weinan-Zhengzhou section)[J]. Environmental Science, 2019, 40(1): 228-238 (in Chinese). doi: 10.13227/j.hjkx.201805240
|
[18] |
PHILLIPS M M, DINGLASAN-PANLILIO M J A, MABURY S A, et al. Fluorotelomer acids are more toxic than perfluorinated acids[J]. Environmental Science & Technology, 2007, 41(20): 7159-7163.
|
[19] |
PHILLIPS M M, DINGLASAN-PANLILIO M J A, MABURY S A, et al. Chronic toxicity of fluorotelomer acids to Daphnia magna and Chironomus dilutus[J]. Environmental Toxicology and Chemistry, 2010, 29(5): 1123-1131.
|
[20] |
MITCHELL R J, MYERS A L, MABURY S A, et al. Toxicity of fluorotelomer carboxylic acids to the algae Pseudokirchneriella subcapitata and Chlorella vulgaris, and the amphipod Hyalella azteca[J]. Ecotoxicology and Environmental Safety, 2011, 74(8): 2260-2267. doi: 10.1016/j.ecoenv.2011.07.034
|
[21] |
LEE H, D'EON J, MABURY S A. Biodegradation of polyfluoroalkyl phosphates as a source of perfluorinated acids to the environment[J]. Environmental Science & Technology, 2010, 44(9): 3305-3310.
|
[22] |
GALLEN C, BIGNERT A, TAUCARE G, et al. Temporal trends of perfluoroalkyl substances in an Australian wastewater treatment plant: A ten-year retrospective investigation[J]. Science of the Total Environment, 2022, 804: 150211. doi: 10.1016/j.scitotenv.2021.150211
|
[23] |
GREMMEL C, FRÖMEL T, KNEPPER T P. HPLC–MS/MS methods for the determination of 52 perfluoroalkyl and polyfluoroalkyl substances in aqueous samples[J]. Analytical and Bioanalytical Chemistry, 2017, 409(6): 1643-1655. doi: 10.1007/s00216-016-0110-z
|
[24] |
ERIKSSON U, HAGLUND P, KÄRRMAN A. Contribution of precursor compounds to the release of per- and polyfluoroalkyl substances (PFASs) from waste water treatment plants (WWTPs)[J]. Journal of Environmental Sciences, 2017, 61: 80-90. doi: 10.1016/j.jes.2017.05.004
|
[25] |
MA C M, PENG H, CHEN H R, et al. Long-term trends of fluorotelomer alcohols in a wastewater treatment plant impacted by textile manufacturing industry[J]. Chemosphere, 2022, 299: 134442. doi: 10.1016/j.chemosphere.2022.134442
|
[26] |
杨琳, 李敬光. 全氟化合物前体物质生物转化与毒性研究进展[J]. 环境化学, 2015, 34(4): 649-655.
YANG L, LI J G. Perfluorinated compound precursors: Biotransformation and toxicity[J]. Environmental Chemistry, 2015, 34(4): 649-655 (in Chinese).
|
[27] |
KIM M H, WANG N, McDONALD T, et al. Biodefluorination and biotransformation of fluorotelomer alcohols by two alkane-degrading Pseudomonas strains[J]. Biotechnology and Bioengineering, 2012, 109(12): 3041-3048. doi: 10.1002/bit.24561
|
[28] |
KIM M H, WANG N, CHU K H. 6: 2 Fluorotelomer alcohol (6: 2 FTOH) biodegradation by multiple microbial species under different physiological conditions[J]. Applied Microbiology and Biotechnology, 2014, 98(4): 1831-1840. doi: 10.1007/s00253-013-5131-3
|
[29] |
DINGLASAN M J A, YE Y, EDWARDS E A, et al. Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids[J]. Environmental Science & Technology, 2004, 38(10): 2857-2864.
|
[30] |
ZHANG S, SZOSTEK B, McCAUSLAND P K, et al. 6: 2 and 8: 2 fluorotelomer alcohol anaerobic biotransformation in digester sludge from a WWTP under methanogenic conditions[J]. Environmental Science & Technology, 2013, 47(9): 4227-4235.
|
[31] |
YU X L, TAKABE Y, YAMAMOTO K, et al. Biodegradation property of 8: 2 fluorotelomer alcohol (8: 2 FTOH) under aerobic/anoxic/anaerobic conditions[J]. Journal of Water and Environment Technology, 2016, 14(3): 177-190. doi: 10.2965/jwet.15-056
|
[32] |
YU X L, NISHIMURA F, HIDAKA T. Effects of microbial activity on perfluorinated carboxylic acids (PFCAs) generation during aerobic biotransformation of fluorotelomer alcohols in activated sludge[J]. Science of the Total Environment, 2018, 610/611: 776-785. doi: 10.1016/j.scitotenv.2017.08.075
|
[33] |
WANG N, SZOSTEK B, FOLSOM P W, et al. Aerobic biotransformation of 14C-labeled 8-2 telomer B alcohol by activated sludge from a domestic sewage treatment plant[J]. Environmental Science & Technology, 2005, 39(2): 531-538.
|
[34] |
LI F, SU Q F, ZHOU Z M, et al. Anaerobic biodegradation of 8: 2 fluorotelomer alcohol in anaerobic activated sludge: Metabolic products and pathways[J]. Chemosphere, 2018, 200: 124-132. doi: 10.1016/j.chemosphere.2018.02.065
|
[35] |
陈红瑞, 张昱, 杨敏. 全氟化合物前体物氟调醇的检测方法、环境分布及转化研究进展[J]. 环境化学, 2015, 34(12): 2170-2178. doi: 10.7524/j.issn.0254-6108.2015.12.2015052602
CHEN H R, ZHANG Y, YANG M. Research progress on the detection methods, environmental distribution and transformation of perfluorinated compounds’ precursors fluorotelomer alcohols[J]. Environmental Chemistry, 2015, 34(12): 2170-2178 (in Chinese). doi: 10.7524/j.issn.0254-6108.2015.12.2015052602
|
[36] |
马春萌, 陈红瑞, 马洁, 等. 短链全氟烷酸替代物在城市污水深度处理工艺中的分布和排放[J]. 生态毒理学报, 2020, 15(5): 147-157.
MA C M, CHEN H R, MA J, et al. Occurrence and discharge of short-chain perfluoroalkyl acids(PFAAs)substitutes during advanced treatment process in municipal wastewater treatment plants[J]. Asian Journal of Ecotoxicology, 2020, 15(5): 147-157 (in Chinese).
|
[37] |
MU H X, LI J H, CHEN L, et al. Distribution, source and ecological risk of per- and polyfluoroalkyl substances in Chinese municipal wastewater treatment plants[J]. Environment International, 2022, 167: 107447. doi: 10.1016/j.envint.2022.107447
|
[38] |
ZHOU Y Q, MENG J, ZHANG M, et al. Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants?[J]. Environment International, 2019, 131: 104982. doi: 10.1016/j.envint.2019.104982
|
[39] |
CAO X H, WANG C C, LU Y L, et al. Occurrence, sources and health risk of polyfluoroalkyl substances (PFASs) in soil, water and sediment from a drinking water source area[J]. Ecotoxicology and Environmental Safety, 2019, 174: 208-217. doi: 10.1016/j.ecoenv.2019.02.058
|