[1] |
王沛芳, 包天力, 胡斌, 等. 天然胶体的水环境行为[J]. 湖泊科学, 2021, 33(1): 28-48. doi: 10.18307/2021.0100
WANG P F, BAO T L, HU B, et al. Environmental behaviors of natural colloids in water environment[J]. Journal of Lake Sciences, 2021, 33(1): 28-48 (in Chinese). doi: 10.18307/2021.0100
|
[2] |
WEN J, TANG C Y, CAO Y J, et al. Assessment of trace metals in an aquifer with river-groundwater interaction: The influence of colloidal redistribution and porous matrix change on the migration of metals[J]. Chemosphere, 2019, 223: 588-598. doi: 10.1016/j.chemosphere.2019.01.184
|
[3] |
HUANG Y, ZHOU D, WANG L, et al. Role of tailing colloid from vanadium-titanium magnetite in the adsorption and cotransport with vanadium[J]. Environmental Science and Pollution Research, 2023, 30(12): 34069-34084.
|
[4] |
PENG C, SHEN C S, ZHENG S Y, et al. Transformation of CuO nanoparticles in the aquatic environment: Influence of pH, electrolytes and natural organic matter[J]. Nanomaterials (Basel, Switzerland), 2017, 7(10): 326. doi: 10.3390/nano7100326
|
[5] |
栗婧. 纳米颗粒在环境迁移中的凝聚动力学[D]. 太原: 太原理工大学, 2020.
LI J. Coagulation kinetics of nanoparticles in environmental migration[D]. Taiyuan: Taiyuan University of Technology, 2020 (in Chinese).
|
[6] |
TOMBÁCZ E, TÓTH I Y, NESZTOR D, et al. Adsorption of organic acids on magnetite nanoparticles, pH-dependent colloidal stability and salt tolerance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 435: 91-96.
|
[7] |
张凡, 张永祥, 王祎啸. 基于DLVO理论探究不同因素下土壤胶体迁移堵塞问题[J]. 山东化工, 2019, 48(13): 227-231, 233. doi: 10.3969/j.issn.1008-021X.2019.13.095
ZHANG F, ZHANG Y X, WANG Y X. Study on migration and blockage of soil colloids under different factors based on DLVO theory[J]. Shandong Chemical Industry, 2019, 48(13): 227-231, 233 (in Chinese). doi: 10.3969/j.issn.1008-021X.2019.13.095
|
[8] |
王龙, 马杰, 邓迎璇, 等. 金属离子在铁(氢)氧化物与腐殖质微界面上的吸附机理和模型研究进展[J]. 农业资源与环境学报, 2017, 34(5): 405-413. doi: 10.13254/j.jare.2017.0125
WANG L, MA J, DENG Y X, et al. Micro-interfacial mechanism and model of metal ions adsorption on the iron(hydr) oxides and humic substances: A review[J]. Journal of Agricultural Resources and Environment, 2017, 34(5): 405-413 (in Chinese). doi: 10.13254/j.jare.2017.0125
|
[9] |
朱心宇. 土壤天然纳米颗粒稳定性的表征及其在水稻土成土过程中的变化[D]. 杭州: 浙江大学, 2017.
ZHU X Y. Characterization of the stability of soil natural nanoparticles and its changes in the process of paddy soil formation[D]. Hangzhou: Zhejiang University, 2017 (in Chinese).
|
[10] |
张然, 陈雅丽, 武晓娟, 等. 离子强度和胡敏酸影响下不同土壤胶体稳定性研究[J]. 环境科学学报, 2021, 41(6): 2347-2357. doi: 10.13671/j.hjkxxb.2020.0533
ZHANG R, CHEN Y L, WU X J, et al. Stability of different types of soil colloids under the influence of ionic strength and humic acid[J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2347-2357 (in Chinese). doi: 10.13671/j.hjkxxb.2020.0533
|
[11] |
王智巧, 马杰, 陈雅丽, 等. 不同环境条件下水铁矿和针铁矿纳米颗粒稳定性[J]. 环境科学, 2020, 41(5): 2292-2300. doi: 10.13227/j.hjkx.201910218
WANG Z Q, MA J, CHEN Y L, et al. Stability of ferrihydrite and goethite nanoparticles under different environmental conditions[J]. Environmental Science, 2020, 41(5): 2292-2300 (in Chinese). doi: 10.13227/j.hjkx.201910218
|
[12] |
YANG W, LI B G, SHANG J Y. Aggregation kinetics of biochar nanoparticles in aqueous environment: Interplays of anion type and bovine serum albumin[J]. Science of the Total Environment, 2022, 833: 155148. doi: 10.1016/j.scitotenv.2022.155148
|
[13] |
YANG W, SHANG J Y, SHARMA P, et al. Colloidal stability and aggregation kinetics of biochar colloids: Effects of pyrolysis temperature, cation type, and humic acid concentrations[J]. Science of the Total Environment, 2019, 658: 1306-1315. doi: 10.1016/j.scitotenv.2018.12.269
|
[14] |
WEI X Y, PAN D Q, XU Z, et al. Colloidal stability and correlated migration of illite in the aquatic environment: The roles of pH, temperature, multiple cations and humic acid[J]. Science of the Total Environment, 2021, 768: 144174. doi: 10.1016/j.scitotenv.2020.144174
|
[15] |
YAN C R, CHENG T, SHANG J Y. Effect of bovine serum albumin on stability and transport of kaolinite colloid[J]. Water Research, 2019, 155: 204-213. doi: 10.1016/j.watres.2019.02.022
|
[16] |
ZHOU D, SUN T Z, HUANG Y, et al. Role of nonspherical DLVO and capillary forces in the transport of 2D delaminated Ti3C2T x MXene in saturated and unsaturated porous media[J]. Environmental Research, 2021, 200: 111451. doi: 10.1016/j.envres.2021.111451
|
[17] |
张博文. 铁改性花生壳生物炭吸附除磷性能及机理研究[D]. 北京: 中国地质大学(北京), 2018.
ZHANG B W. Study on adsorption and phosphorus removal performance and mechanism of iron-modified peanut shell biochar[D]. Beijing: China University of Geosciences, 2018 (in Chinese).
|
[18] |
TAHERI P, TERRYN H, MOL J M C. An in situ study of amine and amide molecular interaction on Fe surfaces[J]. Applied Surface Science, 2015, 354: 242-249. doi: 10.1016/j.apsusc.2015.08.042
|
[19] |
ZVIAGINA B B, DRITS V A, DORZHIEVA O V. Distinguishing features and identification criteria for K-dioctahedral 1M Micas (illite-aluminoceladonite and illite-glauconite-celadonite series) from middle-infrared spectroscopy data[J]. Minerals, 2020, 10(2): 153. doi: 10.3390/min10020153
|
[20] |
王帅, 徐俊平, 王楠, 等. FTIR及SEM诊断铁铝锰氧化物参与微生物利用木质素形成矿物-菌体残留物的结构特征[J]. 光谱学与光谱分析, 2018, 38(7): 2086-2093.
WANG S, XU J P, WANG N, et al. Structural characteristics of mineral-microbial residues formed by microbial utilization of lignin joined with Fe, Al, Mn-oxides based on FT-IR and SEM techniques[J]. Spectroscopy and Spectral Analysis, 2018, 38(7): 2086-2093 (in Chinese).
|
[21] |
张泽鑫. 土壤中细菌/铝代针铁矿富集U(Ⅵ)的行为研究[D]. 合肥: 合肥工业大学, 2019.
ZHANG Z X. Study on enrichment behavior of U(Ⅵ) by bacteria/Al instead of goethite in soil[D]. Hefei: Hefei University of Technology, 2019 (in Chinese).
|
[22] |
HAHN M W, ABADZIC D, O'MELIA C R. Aquasols: On the role of secondary minima[J]. Environmental Science & Technology, 2004, 38(22): 5915-5924.
|
[23] |
REDMAN J A, WALKER S L, ELIMELECH M. Bacterial adhesion and transport in porous media: Role of the secondary energy minimum[J]. Environmental Science & Technology, 2004, 38(6): 1777-1785.
|
[24] |
HAHN M W, O'MELIAE C R. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: Some concepts and applications[J]. Environmental Science & Technology, 2004, 38(1): 210-220.
|
[25] |
FRANCHI A, O'MELIA C R. Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media[J]. Environmental Science & Technology, 2003, 37(6): 1122-1129.
|
[26] |
TUFENKJI N, ELIMELECH M. Breakdown of colloid filtration theory: Role of the secondary energy minimum and surface charge heterogeneities[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2005, 21(3): 841-852. doi: 10.1021/la048102g
|
[27] |
杨俊威. 水合氧化铝胶体和胡敏酸对U(Ⅵ)在饱和多孔介质中运移的影响[D]. 兰州: 兰州大学, 2019.
YANG J W. Effects of hydrated alumina colloid and humic acid on migration of U (Ⅵ) in saturated porous media[D]. Lanzhou: Lanzhou University, 2019 (in Chinese).
|
[28] |
谷建晓, 季春生, 杨钧岩, 等. 阳离子对蒙脱石胶体絮凝的影响[C]. 北京: 科学出版社, 2017.
GU J X, JI C S, YANG J Y, et al. Effect of cations on flocculation of montmorillonite colloid[C]. Beijing: science press, 2017(in Chinese).
|
[29] |
宋冰清. 生物炭微纳米颗粒的理化性质及其在环境中胶体稳定性研究[D]. 上海: 上海交通大学, 2019.
SONG B Q. Physical and chemical properties of biochar micro-nano particles and their colloidal stability in the environment[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese).
|
[30] |
刘娟娟. 铁(氢)氧化物纳米颗粒的团聚行为及其机理研究[D]. 杨凌: 西北农林科技大学, 2019.
LIU J J. Study on agglomeration behavior and mechanism of iron (hydrogen) oxide nanoparticles[D]. Yangling: Northwest A & F University, 2019 (in Chinese).
|
[31] |
YU S J, LIU H, YANG R, et al. Aggregation and stability of selenium nanoparticles: Complex roles of surface coating, electrolytes and natural organic matter[J]. Journal of Environmental Sciences, 2023, 130: 14-23. doi: 10.1016/j.jes.2022.10.025
|
[32] |
YU S J, LIU J F, YIN Y G, et al. Interactions between engineered nanoparticles and dissolved organic matter: A review on mechanisms and environmental effects[J]. Journal of Environmental Sciences, 2018, 63: 198-217. doi: 10.1016/j.jes.2017.06.021
|
[33] |
TAN Z Q, YIN Y G, GUO X R, et al. Tracking the transformation of nanoparticulate and ionic silver at environmentally relevant concentration levels by hollow fiber flow field-flow fractionation coupled to ICPMS[J]. Environmental Science & Technology, 2017, 51(21): 12369-12376.
|
[34] |
TAN Z Q, YIN Y G, GUO X R, et al. Natural organic matter inhibits aggregation of few-layered black phosphorus in mono- and divalent electrolyte solutions[J]. Environmental Science: Nano, 2019, 6(2): 599-609. doi: 10.1039/C8EN01178H
|
[35] |
卢珊, 王方, 王中良. 腐殖酸对生物炭吸附水环境中雌激素的影响[J]. 环境污染与防治, 2019, 41(7): 783-787. doi: 10.15985/j.cnki.1001-3865.2019.07.009
LU S, WANG F, WANG Z L. Effect of humic acid on estrogens adsorption by biochar in aquatic environment[J]. Environmental Pollution & Control, 2019, 41(7): 783-787 (in Chinese). doi: 10.15985/j.cnki.1001-3865.2019.07.009
|
[36] |
张华. 不同来源腐植酸及常见阳离子对二氧化钛纳米颗粒聚沉行为影响的研究[D]. 南昌: 南昌大学, 2019.
ZHANG H. Study on the influence of humic acid from different sources and common cations on the aggregation and sedimentation behavior of titanium dioxide nanoparticles[D]. Nanchang: Nanchang University, 2019 (in Chinese).
|