[1] |
THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838-838.
|
[2] |
杨婧婧, 徐笠, 陆安祥. 环境中微(纳米)塑料的来源及毒理学研究进展[J]. 环境化学, 2018, 37(3): 383-396. doi: 10.7524/j.issn.0254-6108.2017071002
YANG J J, XU L, LU A X, et al. Research progress on the sources and toxicology of micro (nano) plastics in environment[J]. Environmental Chemistry, 2018, 37(3): 383-396 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017071002
|
[3] |
ROCHA-SANTOS T, DUARTE A C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment[J]. TrAC Trends in Analytical Chemistry, 2015, 65: 47-53.
|
[4] |
COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment: A review[J]. Marine Pollution Bulletin, 2011, 62(12): 2588-2597.
|
[5] |
GUO X, LIN H, XU S, et al. Recent advances in spectroscopic techniques for the analysis of microplastics in food[J]. Journal of Agricultural and Food Chemistry, 2022, 70(5): 1410-1422.
|
[6] |
ZHANG Q, XU E G, LI J, et al. A review of microplastics in table salt, drinking water, and air: direct human exposure[J]. Environmental Science & Technology, 2020, 54(7): 3740-3751.
|
[7] |
SHIM W J, THOMPOSON R C. Microplastics in the Ocean[J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 265-268.
|
[8] |
HUERTA LWANGA E, MENDOZA VEGA J, KU QUEJ V, et al. Field evidence for transfer of plastic debris along a terrestrial food chain[J]. Scientific Reports, 2017, 7(1): 14071.
|
[9] |
ZHU D, CHEN Q L, AN X L, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition[J]. Soil Biology and Biochemistry, 2018, 116: 302-310.
|
[10] |
FARRELL P, NELSON K. Trophic level transfer of microplastic: Mytilus edulis (L. ) to Carcinus maenas (L. )[J]. Environmental Pollution, 2013, 177: 1-3.
|
[11] |
WATTS A J R, LEWIS C, GOODHEAD R M, et al. Uptake and retention of microplastics by the shore crab carcinus maenas[J]. Environmental Science & Technology, 2014, 48(15): 8823-8830.
|
[12] |
CARPENTER E J, SMITH K L. Plastics on the Sargasso Sea surface[J]. Science, 1972, 175(4027): 1240-1241.
|
[13] |
ARTHUR C , BAKER J , BAMFORD H. Proceedings of the second research workshop on microplastic debris, November 5−6, 2010[Z]. NOAA Technical Memorandum NOS-OR&R-39, 2011.
|
[14] |
EUROPE P. Plastics–the facts 2020[J]. PlasticEurope, 2020, 1: 1-64.
|
[15] |
薛荔栋,张霖琳,于海斌,等. 土壤微塑料监测技术现状及方法标准化建议[J]. 中国环境监测, 2022, 38(5 ): 9-17.
XUE L D, ZHANG L L, YU H B, et al. Research status of monitoring technologies for microplastics in soil and suggestions for method standardization[J]. Environmental Monitoring in China, 2022, 38(5): 9-17 (in Chinese).
|
[16] |
NUELLE M T, DEKIFF J H, REMY D, et al. A new analytical approach for monitoring microplastics in marine sediments[J]. Environmental Pollution, 2014, 184: 161-169.
|
[17] |
ZOBKOV M B, ESIUKOVA E E. Evaluation of the Munich Plastic Sediment Separator efficiency in extraction of microplastics from natural marine bottom sediments: Munich Plastic Sediment Separator efficiency[J]. Limnology and Oceanography: Methods, 2017, 15(11): 967-978.
|
[18] |
CRICHTON E M, NOËL M, GIES E A, et al. A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments[J]. Analytical Methods, 2017, 9(9): 1419-1428.
|
[19] |
陈雅兰,孙可,韩兰芳,等. 土壤中微塑料的分离及检测方法研究进展[J]. 土壤学报, 2022, 59(2): 364-380.
CHEN Y L, SUN K, HAN L F, et al. Separation, identification, and quantification methods in soil microplastics analysis: A review[J]. Acta Pedologica Sinica, 2022, 59(2): 364-380 (in Chinese).
|
[20] |
GRBIC J, NGUYEN B, GUO E, et al. Magnetic extraction of microplastics from environmental samples[J]. Environmental Science & Technology Letters, 2019, 6(2): 68-72.
|
[21] |
SCHEURER M, BIGALKE M. Microplastics in Swiss Floodplain Soils[J]. Environmental Science & Technology, 2018, 52(6): 3591-3598.
|
[22] |
GAUQUIE J, DEVRIESE L, ROBBENS J, et al. A qualitative screening and quantitative measurement of organic contaminants on different types of marine plastic debris[J]. Chemosphere, 2015, 138: 348-356.
|
[23] |
QIU Q, TAN Z, WANG J, et al. Extraction, enumeration and identification methods for monitoring microplastics in the environment[J]. Estuarine, Coastal and Shelf Science, 2016, 176: 102-109.
|
[24] |
DEHAUT A, CASSONE A L, FRÈRE L, et al. Microplastics in seafood: Benchmark protocol for their extraction and characterization[J]. Environmental Pollution, 2016, 215: 223-233.
|
[25] |
ZHAO S, DANLEY M, WARD J E, et al. An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy[J]. Analytical Methods, 2017, 9(9): 1470-1478.
|
[26] |
HURLEY R R, LUSHER A L, OLSEN M, et al. Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices[J]. Environmental Science & Technology, 2018, 52(13): 7409-7417.
|
[27] |
COURTENE-JONES W, QUINN B, MURPHY F, et al. Optimisation of enzymatic digestion and validation of specimen preservation methods for the analysis of ingested microplastics[J]. Analytical Methods, 2017, 9(9): 1437-1445.
|
[28] |
ENFRIN M, DUMÉE L F, LEE J. Nano/microplastics in water and wastewater treatment processes – Origin, impact and potential solutions[J]. Water Research, 2019, 161: 621-638.
|
[29] |
CORCORAN P L, BIESINGER M C, GRIFI M. Plastics and beaches: A degrading relationship[J]. Marine Pollution Bulletin, 2009, 58(1): 80-84.
|
[30] |
BORN M P, BRÜLL C. From model to nature — A review on the transferability of marine (micro-) plastic fragmentation studies[J]. Science of the Total Environment, 2022, 811: 151389.
|
[31] |
ALLEN N S, EDGE M, MOHAMMADIAN M, et al. Hydrolytic degradation of poly(ethylene terephthalate): Importance of chain scission versus crystallinity[J]. European Polymer Journal, 1991, 27(12): 1373-1378.
|
[32] |
HANKE G, GALGANI F, WERNER S, et al. Guidance on monitoring of marine litter in European Seas[Z]. EUR Luxembourg (Luxembourg): Publications Office of the European Union, 2013.
|
[33] |
ERIKSEN M, MASON S, WILSON S, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes[J]. Marine Pollution Bulletin, 2013, 77(1-2): 177-182.
|
[34] |
HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al. Microplastics in the marine environment: a review of the methods used for identification and quantification[J]. Environmental Science & Technology, 2012, 46(6): 3060-3075.
|
[35] |
姚浩. 环境中微塑料检测方法的研究进展[J]. 山西化工, 2022 42(2 ): 55-57.
YAO H. Research progress on detection methods of micro plastics in environment[J]. Shanxi Chemical Industry, 2022, 42(2): 55-57 (in Chinese).
|
[36] |
顾伟康, 杨国峰, 刘艺, 等. 环境介质中微塑料的处理与检测方法研究进展[J]. 土木与环境工程学报(中英文), 2020, 42(1): 135-143.
Treatment and detection methods of microplastics from environmental media: A review[J]. Journal of Civil and Environmental Engineering, 2020, 42(1): 135-143(in Chinese).
|
[37] |
冉泰山,廖洪凯,龙健,等. 微塑料在土壤环境中的分离和检测方法研究进展[J]. 塑料科技, 2022, 50(7 ): 101-104.
RAN T S, LIAO H K, LONG J, et al. Research progress on separation and detection methods of microplastics in soil environment[J]. Plastics Science and Technology, 2022, 50(7): 101-104 (in Chinese).
|
[38] |
AHMED M B, RAHMAN Md S, ALOM J, et al. Microplastic particles in the aquatic environment: A systematic review[J]. Science of The Total Environment, 2021, 775: 145793.
|
[39] |
王嘉嘉,王佩瑶,王成浩,等. 土壤中微塑料的检测及其对土壤生态环境的影响[J]. 塑料科技, 2022, 50(10 ): 108-112.
WANG J J, WANG P Y, WANG C H, et al. Determination of microplastics in soil and its effects on soil ecosystem[J]. Plastics Science and Technology, 2022, 50(10): 108-112 (in Chinese).
|
[40] |
SILVA A B, BASTOS A S, JUSTINO C I L, et al. Microplastics in the environment: Challenges in analytical chemistry - a review[J]. Analytica Chimica Acta, 2018, 1017: 1-19.
|
[41] |
IVLEVA N P. Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives[J]. Chemical Reviews, 2021, 121(19): 11886-11936.
|
[42] |
DE FROND H, RUBINOVITZ R, ROCHMAN C M. μATR-FTIR spectral libraries of plastic particles (FLOPP and FLOPP-e) for the analysis of microplastics[J]. Analytical Chemistry, 2021, 93(48): 15878-15885.
|
[43] |
GAGO J, GALGANI F, MAES T, et al. Microplastics in seawater: recommendations from the marine strategy framework directive implementation process[J]. Frontiers in Marine Science, 2016, 3: 219.
|
[44] |
ELERT A M, BECKER R, DUEMICHEN E, et al. Comparison of different methods for MP detection: What can we learn from them, and why asking the right question before measurements matters?[J]. Environmental Pollution, 2017, 231: 1256-1264.
|
[45] |
MALLIKARJUNACHARI G, GHOSH P. Analysis of strength and response of polymer nano thin film interfaces applying nanoindentation and nanoscratch techniques[J]. Polymer, 2016, 90: 53-66.
|
[46] |
LÖDER M G J, GERDTS G. Methodology used for the detection and identification of microplastics—a critical appraisal[M]//BERGMANN M, GUTOW L, KLAGES M. Marine Anthropogenic Litter. Cham: Springer International Publishing, 2015: 201-227[2022-12-20].
|
[47] |
HERNANDEZ L M, YOUSEFI N, TUFENKJI N. Are there nanoplastics in your personal care products?[J]. Environmental Science & Technology Letters, 2017, 4(7): 280-285.
|
[48] |
TAGG A S, SAPP M, HARRISON J P, et al. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging[J]. Analytical Chemistry, 2015, 87(12): 6032-6040.
|
[49] |
VIANELLO A, JENSEN R L, LIU L, et al. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin[J]. Scientific Reports, 2019, 9(1): 8670.
|
[50] |
KÄPPLER A, FISCHER D, OBERBECKMANN S, et al. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both?[J]. Analytical and Bioanalytical Chemistry, 2016, 408(29): 8377-8391.
|
[51] |
ANGER P M, VON DER ESCH E, BAUMANN T, et al. Raman microspectroscopy as a tool for microplastic particle analysis[J]. TrAC Trends in Analytical Chemistry, 2018, 109: 214-226.
|
[52] |
RIBEIRO-CLARO P, NOLASCO M M, ARAÚJO C. Characterization of microplastics by Raman spectroscopy[J]. Comprehensive Analytical Chemistry, 2017, 75: 119-151.
|
[53] |
CABERNARD L, ROSCHER L, LORENZ C, et al. Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment[J]. Environmental Science & Technology, 2018, 52(22): 13279-13288.
|
[54] |
IVLEVA N P, WIESHEU A C, NIESSNER R. Microplastic in aquatic ecosystems[J]. Angewandte Chemie International Edition, 2017, 56(7): 1720-1739.
|
[55] |
LÖDER M G J, IMHOF H K, LADEHOFF M, et al. Enzymatic purification of microplastics in environmental samples[J]. Environmental Science & Technology, 2017, 51(24): 14283-14292.
|
[56] |
MÖLLER J N, LÖDER M G J, LAFORSCH C. Finding microplastics in soils: A review of analytical methods[J]. Environmental Science & Technology, 2020, 54(4): 2078-2090.
|
[57] |
LI J, LIU H, PAUL CHEN J. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection[J]. Water Research, 2018, 137: 362-374.
|
[58] |
MAJEWSKY M, BITTER H, EICHE E, et al. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC)[J]. Science of The Total Environment, 2016, 568: 507-511.
|
[59] |
RODRÍGUEZ CHIALANZA M, SIERRA I, PÉREZ PARADA A, et al. Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry[J]. Environmental Science and Pollution Research, 2018, 25(17): 16767-16775.
|
[60] |
PEÑALVER R, ARROYO-MANZANARES N, LÓPEZ-GARCÍA I, et al. An overview of microplastics characterization by thermal analysis[J]. Chemosphere, 2020, 242: 125170.
|
[61] |
DAVID J, STEINMETZ Z, KUČERÍK J, et al. Quantitative Analysis of Poly(ethylene terephthalate) Microplastics in Soil via Thermogravimetry–Mass Spectrometry[J]. Analytical Chemistry, 2018, 90(15): 8793-8799.
|
[62] |
DÜMICHEN E, EISENTRAUT P, BANNICK C G, et al. Fast identification of microplastics in complex environmental samples by a thermal degradation method[J]. Chemosphere, 2017, 174: 572-584. doi: 10.1016/j.chemosphere.2017.02.010
|
[63] |
DÜMICHEN E, BARTHEL A K, BRAUN U, et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method[J]. Water Research, 2015, 85: 451-457.
|
[64] |
DÜMICHEN E, BRAUN U, SENZ R, et al. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry[J]. Journal of Chromatography A, 2014, 1354: 117-128. doi: 10.1016/j.chroma.2014.05.057
|
[65] |
FRIES E, DEKIFF J H, WILLMEYER J, et al. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy[J]. Environmental Science: Processes & Impacts, 2013, 15(10): 1949.
|
[66] |
LI C, GAO Y, HE S, et al. Quantification of nanoplastic uptake in cucumber plants by pyrolysis gas chromatography/mass spectrometry[J]. Environmental Science & Technology Letters, 2021, 8(8): 633-638.
|
[67] |
AKAL N M K, KARAG Z S. Analytical pyrolysis of biomass using gas chromatography coupled to mass spectrometry[J]. TrAC Trends in Analytical Chemistry, 2014, 61: 11-16. doi: 10.1016/j.trac.2014.06.006
|
[68] |
ZHOU X , HAO L T, WANG H , et al. Cloud-point extraction combined with thermal degradation for nanoplastic analysis using pyrolysis gas chromatography–mass spectrometry[J]. Analytical chemistry, 2018, 91(3): 1785-1790.
|
[69] |
VAN CAUWENBERGHE L, VANREUSEL A, MEES J, et al. Microplastic pollution in deep-sea sediments[J]. Environmental Pollution, 2013, 182: 495-499. doi: 10.1016/j.envpol.2013.08.013
|
[70] |
BROWNE M A, CRUMP P, NIVEN S J, et al. Accumulation of microplastic on shorelines woldwide: sources and sinks[J]. Environmental Science & Technology, 2011, 45(21): 9175-9179.
|
[71] |
CLAESSENS M, MEESTER S D, LANDUYT L V, et al. Occurrence and distribution of microplastics in marine sediments along the Belgian coast[J]. Marine Pollution Bulletin, 2011, 62(10): 2199-2204.
|
[72] |
DEKIFF J H, REMY D, KLASMEIER J, et al. Occurrence and spatial distribution of microplastics in sediments from Norderney[J]. Environmental Pollution, 2014, 186: 248-256.
|
[73] |
KÄPPLER A, FISCHER M, SCHOLZ-BÖTTCHER B M, et al. Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments[J]. Analytical and Bioanalytical Chemistry, 2018, 410(21): 5313-5327.
|
[74] |
HERMABESSIERE L, HIMBER C, BORICAUD B, et al. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics[J]. Analytical and Bioanalytical Chemistry, 2018, 410(25): 6663-6676.
|
[75] |
TER HALLE A, LADIRAT L, GENDRE X, et al. Understanding the fragmentation pattern of marine plastic debris[J]. Environmental Science & Technology, 2016, 50(11): 5668-5675.
|
[76] |
DONG M, ZHANG Q, XING X, et al. Raman spectra and surface changes of microplastics weathered under natural environments[J]. Science of The Total Environment, 2020, 739: 139990. doi: 10.1016/j.scitotenv.2020.139990
|
[77] |
KARAMI A, GOLIESKARDI A, CHOO C K, et al. Microplastic and mesoplastic contamination in canned sardines and sprats[J]. Science of the Total Environment, 2018, 612: 1380-1386. doi: 10.1016/j.scitotenv.2017.09.005
|
[78] |
SARAU G, KLING L, OSSMANN B E, et al. Correlative microscopy and spectroscopy workflow for microplastics[J]. Applied Spectroscopy, 2020, 74(9): 1155-1160.
|
[79] |
KUROUSKI D, DAZZI A, ZENOBI R, et al. Infrared and Raman chemical imaging and spectroscopy at the nanoscale[J]. Chemical Society Reviews, 2020, 49(11): 3315-3347.
|
[80] |
DAZZI A, PRATER C B. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging[J]. Chemical Reviews, 2017, 117(7): 5146-5173.
|
[81] |
MEYNS M, PRIMPKE S, GERDTS G. Library based identification and characterisation of polymers with nano-FTIR and IR-sSNOM imaging[J]. Analytical Methods, 2019, 11(40): 5195-5202.
|
[82] |
KUROUSKI D, VAN DUYNE R P. In Situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS)[J]. Analytical Chemistry, 2015, 87(5): 2901-2906.
|
[83] |
LEE H, LEE D Y, KANG M G, et al. Tip-enhanced photoluminescence nano-spectroscopy and nano-imaging[J]. Nanophotonics, 2020, 9(10): 3089-3110.
|
[84] |
XUE Q, WANG N, YANG H, et al. Detection of microplastics based on spatial heterodyne Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 283: 121712.
|
[85] |
FANG T, SHANG W, LIU C, et al. Nondestructive identification and accurate isolation of single cells through a chip with Raman optical tweezers[J]. Analytical Chemistry, 2019, 91(15): 9932-9939.
|
[86] |
ZHAO P, ZHAO Y, CUI L, et al. Multiple antibiotics distribution in drinking water and their co-adsorption behaviors by different size fractions of natural particles[J]. Science of The Total Environment, 2021, 775: 145846.
|
[87] |
SU Y, HU X, TANG H, et al. Steam disinfection releases micro (nano) plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy[J]. Nature Nanotechnology, 2022, 17(1): 76-85. doi: 10.1038/s41565-021-00998-x
|
[88] |
FELTS J R, KJOLLER K, LO M, et al. Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication[J]. ACS Nano, 2012, 6(9): 8015-8021.
|
[89] |
HERMANN R J, GORDON M J. Nanoscale optical microscopy and spectroscopy using near-field probes[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9(1): 365-387.
|
[90] |
BREHM M, TAUBNER T, HILLENBRAND R, et al. Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution[J]. Nano Letters, 2006, 6(7): 1307-1310.
|
[91] |
SCHLÜCKER S. Surface-enhanced Raman spectroscopy: concepts and chemical applications[J]. Angewandte Chemie International Edition, 2014, 53(19): 4756-4795.
|
[92] |
LEE P C, MEISEL D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols[J]. The Journal of Physical Chemistry, 1982, 86(17): 3391-3395.
|
[93] |
LV L, HE L, JIANG S, et al. In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments[J]. Science of The Total Environment, 2020, 728: 138449.
|
[94] |
VERMA P. Tip-Enhanced Raman Spectroscopy: Technique and Recent Advances[J]. Chemical Reviews, 2017, 117(9): 6447-6466.
|
[95] |
CHEN C, HAYAZAWA N, KAWATA S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient[J]. Nature Communications, 2014, 5(1): 3312.
|
[96] |
ISSAKA E, YAKUBU S, SULEMANA H, et al. Current status of the direct detection of microplastics in environments and implications for toxicological effects[J]. Chemical Engineering Journal Advances, 2023, 14: 100449.
|
[97] |
GILLIBERT R, BALAKRISHNAN G, DESHOULES Q, et al. Raman tweezers for small microplastics and nanoplastics identification in seawater[J]. Environmental Science & Technology, 2019, 53(15): 9003-9013.
|
[98] |
SCHWAFERTS C, SOGNE V, WELZ R, et al. Nanoplastic analysis by online coupling of Raman microscopy and field-flow fractionation enabled by optical tweezers[J]. Analytical Chemistry, 2020, 92(8): 5813-5820.
|
[99] |
ZHANG D, LI C, ZHANG C, et al. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution[J]. Science Advances, 2016, 2(9): e1600521. doi: 10.1126/sciadv.1600521
|
[100] |
KLEMENTIEVA O, SANDT C, MARTINSSON I, et al. Super‐resolution infrared imaging of polymorphic amyloid aggregates directly in neurons[J]. Advanced Science, 2020, 7(6): 1903004. doi: 10.1002/advs.201903004
|
[101] |
LO M, MARCOTT C, KANSIZ M, et al. Sub-micron, non-contact, super-resolution infrared microspectroscopy for microelectronics contamination and failure analyses[C]//2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). IEEE, 2020: 1-4.
|
[102] |
FRÈRE L, PAUL-PONT I, MOREAU J, et al. A semi-automated Raman micro-spectroscopy method for morphological and chemical characterizations of microplastic litter[J]. Marine Pollution Bulletin, 2016, 113(1-2): 461-468. doi: 10.1016/j.marpolbul.2016.10.051
|
[103] |
SHAN J, ZHAO J, LIU L, et al. A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics[J]. Environmental Pollution, 2018, 238: 121-129.
|
[104] |
PAUL A, WANDER L, BECKER R, et al. High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil[J]. Environmental Science and Pollution Research, 2019, 26(8): 7364-7374.
|
[105] |
PRIMPKE S, GODEJOHANN M, GERDTS G. Rapid identification and quantification of microplastics in the environment by quantum cascade laser-based hyperspectral infrared chemical imaging[J]. Environmental Science & Technology, 2020, 54(24): 15893-15903.
|
[106] |
CORRADINI F, BARTHOLOMEUS H, HUERTA LWANGA E, et al. Predicting soil microplastic concentration using vis-NIR spectroscopy[J]. Science of the Total Environment, 2019, 650: 922-932.
|
[107] |
PEEZ N, JANISKA M C, IMHOF W. The first application of quantitative 1H NMR spectroscopy as a simple and fast method of identification and quantification of microplastic particles (PE, PET, and PS)[J]. Analytical and Bioanalytical Chemistry, 2019, 411(4): 823-833.
|
[108] |
COLSON B C, MICHEL A P M. Flow-through quantification of microplastics using impedance spectroscopy[J]. ACS Sensors, 2021, 6(1): 238-244.
|
[109] |
ZHANG Y, WANG X, SHAN J, et al. Hyperspectral imaging based method for rapid detection of microplastics in the intestinal tracts of fish[J]. Environmental Science & Technology, 2019, 53(9): 5151-5158.
|
[110] |
TARAFDAR A, CHOI S H, KWON J H. Differential staining lowers the false positive detection in a novel volumetric measurement technique of microplastics[J]. Journal of Hazardous Materials, 2022, 432: 128755.
|
[111] |
KEDZIERSKI M, FALCOU-PRÉFOL M, KERROS M E, et al. A machine learning algorithm for high throughput identification of FTIR spectra: Application on microplastics collected in the Mediterranean Sea[J]. Chemosphere, 2019, 234: 242-251.
|
[112] |
BIANCO V, PIRONE D, MEMMOLO P, et al. Identification of microplastics based on the fractal properties of their holographic fingerprint[J]. ACS Photonics, 2021, 8(7): 2148-2157.
|
[113] |
ZHANG Y, ZHANG M, FAN Y. Assessment of microplastics using microfluidic approach[J]. Environmental Geochemistry and Health, 2022[2022-12-31].
|
[114] |
KAILE N, LINDIVAT M, ELIO J, et al. Preliminary results from detection of microplastics in liquid samples using flow cytometry[J]. Frontiers in Marine Science, 2020, 7: 552688.
|
[115] |
BACK H de M, VARGAS JUNIOR E C, ALARCON O E, et al. Training and evaluating machine learning algorithms for ocean microplastics classification through vibrational spectroscopy[J]. Chemosphere, 2022, 287: 131903.
|
[116] |
LUO Y, ZHANG X, ZHANG Z, et al. Dual-principal component analysis of the Raman spectrum matrix to automatically identify and visualize microplastics and nanoplastics[J]. Analytical Chemistry, 2022, 94(7): 3150-3157.
|
[117] |
HUFNAGL B, STIBI M, MARTIROSYAN H, et al. Computer-assisted analysis of microplastics in environmental samples based on μFTIR imaging in combination with machine learning[J]. Environmental Science & Technology Letters, 2022, 9(1): 90-95.
|
[118] |
NG W, MINASNY B, MCBRATNEY A. Convolutional neural network for soil microplastic contamination screening using infrared spectroscopy[J]. Science of The Total Environment, 2020, 702: 134723.
|
[119] |
MORGADO V, PALMA C, BETTENCOURT DA SILVA R J N. Bottom-up evaluation of the uncertainty of the quantification of microplastics contamination in sediment samples[J]. Environmental Science & Technology, 2022, 56(15): 11080-11090.
|
[120] |
ZHU X, NGUYEN B, YOU J B, et al. Identification of microfibers in the environment using multiple lines of evidence[J]. Environmental Science & Technology, 2019, 53(20): 11877-11887.
|
[121] |
WRIGHT S L, LEVERMORE J M, KELLY F J. Raman spectral imaging for the detection of inhalable microplastics in ambient particulate matter samples[J]. Environmental Science & Technology, 2019, 53(15): 8947-8956.
|
[122] |
DAVID J, WEISSMANNOVÁ H D, STEINMETZ Z, et al. Introducing a soil universal model method (SUMM) and its application for qualitative and quantitative determination of poly(ethylene), poly(styrene), poly(vinyl chloride) and poly(ethylene terephthalate) microplastics in a model soil[J]. Chemosphere, 2019, 225: 810-819.
|
[123] |
LI P, LAI Y, LI Q, et al. Total organic carbon as a quantitative index of micro- and nano-plastic pollution[J]. Analytical Chemistry, 2022, 94(2): 740-747.
|
[124] |
SHI Y, YI L, DU G, et al. Visual characterization of microplastics in corn flour by near field molecular spectral imaging and data mining[J]. Science of the Total Environment, 2023, 862: 160714.
|
[125] |
XIE L, GONG K, LIU Y, et al. Strategies and challenges of identifying nanoplastics in environment by surface-enhanced Raman spectroscopy[J]. Environmental Science & Technology, 2023, 51(1):25-43.
|
[126] |
TER HALLE A, JEANNEAU L, MARTIGNAC M, et al. Nanoplastic in the North Atlantic Subtropical Gyre[J]. Environmental Science & Technology, 2017, 51(23): 13689-13697.
|
[127] |
SOBHANI Z, ZHANG X, GIBSON C, et al. Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): Down to 100 nm[J]. Water Research, 2020, 174: 115658.
|
[128] |
BLANCHO F, DAVRANCHE M, HADRI H E, et al. Nanoplastics identification in complex environmental matrices: Strategies for Polystyrene and Polypropylene[J]. Environmental Science & Technology, 2021, 55(13): 8753-8759.
|
[129] |
MATERIĆ D, KASPER-GIEBL A, KAU D, et al. Micro- and nanoplastics in alpine snow: A new method for chemical identification and (semi)quantification in the nanogram range[J]. Environmental Science & Technology, 2020, 54(4): 2353-2359.
|
[130] |
COX K D, COVERNTON G A, DAVIES H L, et al. Human consumption of microplastics[J]. Environmental Science & Technology, 2019, 53(12): 7068-7074.
|
[131] |
ABBASI S, TURNER A. Human exposure to microplastics: A study in Iran[J]. Journal of Hazardous Materials, 2021, 403: 123799. doi: 10.1016/j.jhazmat.2020.123799
|
[132] |
ZHANG K, SHI H, PENG J, et al. Microplastic pollution in China’s inland water systems: a review of findings, methods, characteristics, effects, and management[J]. Science of the Total Environment, 2018, 630: 1641-1653. doi: 10.1016/j.scitotenv.2018.02.300
|
[133] |
KUTRALAM-MUNIASAMY G, SHRUTI V C, PÉREZ-GUEVARA F, et al. Microplastic diagnostics in humans: “The 3Ps” Progress, problems, and prospects[J]. Science of the Total Environment, 2023, 856: 159164.
|
[134] |
SCHWABL P, K PPEL S, K NIGSHOFER P, et al. Detection of various microplastics in human stool: a prospective case series[J]. Annals of Internal Medicine, 2019, 171(7): 453-457. doi: 10.7326/M19-0618
|
[135] |
IBRAHIM Y S, TUAN ANUAR S, AZMI A A, et al. Detection of microplastics in human colectomy specimens[J]. JGH Open, 2021, 5(1): 116-121.
|
[136] |
AMATO-LOURENÇO L F, CARVALHO-OLIVEIRA R, JÚNIOR G R, et al. Presence of airborne microplastics in human lung tissue[J]. Journal of Hazardous Materials, 2021, 416: 126124.
|
[137] |
ZHU L, ZHU J, ZUO R, et al. Identification of microplastics in human placenta using laser direct infrared spectroscopy[J]. Science of The Total Environment, 2023, 856: 159060.
|
[138] |
LESLIE H A, VAN VELZEN M J M, BRANDSMA S H, et al. Discovery and quantification of plastic particle pollution in human blood[J]. Environment International, 2022, 163: 107199.
|
[139] |
JENNER L C, ROTCHELL J M, BENNETT R T, et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy[J]. Science of the Total Environment, 2022, 831: 154907.
|
[140] |
ZHANG N, LI Y B, HE H R, et al. You are what you eat: Microplastics in the feces of young men living in Beijing[J]. Science of the Total Environment, 2021, 767: 144345.
|
[141] |
YAN Z, LIU Y, ZHANG T, et al. Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status[J]. Environmental Science & Technology, 2022, 56(1): 414-421.
|
[142] |
HUANG S, HUANG X, BI R, et al. Detection and analysis of microplastics in human sputum[J]. Environmental Science & Technology, 2022, 56(4): 2476-2486.
|