[1] |
马香娟. 杂环化合物的电化学氧化行为与降解机理[D]. 杭州: 浙江大学, 2013.
MA X J. Electrochemical oxidation behavior and degradation mechanism of heterocyclic compounds[D]. Hangzhou: Zhejiang University, 2013(in Chinese).
|
[2] |
姚燕来. 四氢呋喃的微生物降解研究[D]. 杭州: 浙江大学, 2009.
YAO Y L. Study on microbial degradation of tetrahydrofuran[D]. Hangzhou: Zhejiang University, 2009 (in Chinese).
|
[3] |
RAMOS M D N, SANTANA C S, VELLOSO C C V, et al. A review on the treatment of textile industry effluents through Fenton processes [J]. Process Safety and Environmental Protection, 2021, 155: 366-386. doi: 10.1016/j.psep.2021.09.029
|
[4] |
LI S, SHAN S, CHEN S, et al. Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105967. doi: 10.1016/j.jece.2021.105967
|
[5] |
LI L, ZHU W, ZHANG P, et al. UV/O3-BAC process for removing organic pollutants in secondary effluents [J]. Desalination, 2007, 207(1): 114-124.
|
[6] |
GANIYU S O, ZHOU M, MARTÍNEZ-HUITLE C A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment [J]. Applied Catalysis B: Environmental, 2018, 235: 103-129. doi: 10.1016/j.apcatb.2018.04.044
|
[7] |
ZHANG X, YUAN N, LI Y, et al. Fabrication of new MIL-53(Fe)@TiO2 visible-light responsive adsorptive photocatalysts for efficient elimination of tetracycline [J]. Chemical Engineering Journal, 2022, 428: 131077. doi: 10.1016/j.cej.2021.131077
|
[8] |
WANG C, LIU X, KESER DEMIR N, et al. Applications of water stable metal–organic frameworks [J]. Chemical Society Reviews, 2016, 45(18): 5107-5134. doi: 10.1039/C6CS00362A
|
[9] |
NGUYEN Q K, KUZ’MICHEVA G M, KHRAMOV E V, et al. Design of Metal-Organic Polymers MIL-53(M3+): Preparation and Characterization of MIL-53(Fe) and Graphene Oxide Composite [J] Crystals, 2021, 11(11): 1281.
|
[10] |
WU Q, YANG H, KANG L, et al. Fe-based metal-organic frameworks as Fenton-like catalysts for highly efficient degradation of tetracycline hydrochloride over a wide pH range: Acceleration of Fe(II)/ Fe(III) cycle under visible light irradiation [J]. Applied Catalysis B: Environmental, 2020, 263: 118282. doi: 10.1016/j.apcatb.2019.118282
|
[11] |
DU X, YI X, WANG P, et al. Enhanced photocatalytic Cr(VI) reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100(Fe)/g-C3N4 heterojunctions [J]. Chinese Journal of Catalysis, 2019, 40(1): 70-79. doi: 10.1016/S1872-2067(18)63160-2
|
[12] |
JIANG Y, YANG Q-M, XU Q-J, et al. Metal organic framework MIL-53(Fe) as an efficient artificial oxidase for colorimetric detection of cellular biothiols [J]. Analytical Biochemistry, 2019, 577: 82-88. doi: 10.1016/j.ab.2019.04.020
|
[13] |
XIANG Q, YU Z, WANG P, et al. Construction of Z-scheme N-doped BiFeO3/NH2-MIL-53(Fe) with the synergy of hydrogen peroxide and visible-light-driven photo-Fenton degradation of organic contaminants [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654: 130112. doi: 10.1016/j.colsurfa.2022.130112
|
[14] |
ABDPOUR S, KOWSARI E, MOGHADDAM M R A. Synthesis of MIL-100(Fe)@MIL-53(Fe) as a novel hybrid photocatalyst and evaluation photocatalytic and photoelectrochemical performance under visible light irradiation [J]. Journal of Solid State Chemistry, 2018, 262: 172-180. doi: 10.1016/j.jssc.2018.03.018
|
[15] |
ZHANG C, AI L, JIANG J. Graphene Hybridized Photoactive Iron Terephthalate with Enhanced Photocatalytic Activity for the Degradation of Rhodamine B under Visible Light [J]. Industrial & Engineering Chemistry Research, 2015, 54(1): 153-163.
|
[16] |
AI L, ZHANG C, LI L, et al. Iron terephthalate metal–organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation [J]. Applied Catalysis B: Environmental, 2014, 148-149: 191-200. doi: 10.1016/j.apcatb.2013.10.056
|
[17] |
BANERJEE A, GOKHALE R, BHATNAGAR S, et al. MOF derived porous carbon–Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent [J]. Journal of Materials Chemistry, 2012, 22(37): 19694-19699. doi: 10.1039/c2jm33798c
|
[18] |
ZHANG Y, ZHOU J, CHEN J, et al. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation [J]. Journal of Hazardous Materials, 2020, 392: 122315. doi: 10.1016/j.jhazmat.2020.122315
|
[19] |
DU P D, HOAI P N. Synthesis of MIL-53(Fe) Metal-Organic Framework Material and Its Application as a Catalyst for Fenton-Type Oxidation of Organic Pollutants [J]. Advances in Materials Science and Engineering, 2021, 2021: 1-13.
|
[20] |
YANG T Y, YU D Y, WANG D, et al. Accelerating Fe(III)/Fe(II) cycle via Fe(II) substitution for enhancing Fenton-like performance of Fe-MOFs [J]. Applied Catalysis B-Environmental, 2021, 286:119859.
|
[21] |
ZHANG Z, CHEN X, TAN Y, et al. Preparation of millimeter-scale MIL-53(Fe)@polyethersulfone balls to optimize photo-Fenton process [J]. Chemical Engineering Journal, 2022, 441: 135881. doi: 10.1016/j.cej.2022.135881
|
[22] |
LONG J, WANG S, DING Z, et al. Amine-functionalized zirconium metal–organic framework as efficient visible-light photocatalyst for aerobic organic transformations [J]. Chemical Communications, 2012, 48(95): 11656-11658. doi: 10.1039/c2cc34620f
|
[23] |
ZHANG S, ZHAO X, NIU H, et al. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds [J]. Journal of Hazardous Materials, 2009, 167(1): 560-566.
|
[24] |
CHEN Q, WU P, LI Y, et al. Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation [J]. Journal of Hazardous Materials, 2009, 168(2): 901-908.
|
[25] |
BERNHARDT D, DIEKMANN H. Degradation of dioxane, tetrahydrofuran and other cyclic ethers by an environmental Rhodococcus strain [J]. Applied Microbiology and Biotechnology, 1991, 36(1): 120-123. doi: 10.1007/BF00164711
|
[26] |
SKINNER K, CUIFFETTI L, HYMAN M. Metabolism and Cometabolism of Cyclic Ethers by a Filamentous Fungus, a Graphium sp [J]. Applied and Environmental Microbiology, 2009, 75(17): 5514-5522. doi: 10.1128/AEM.00078-09
|
[27] |
SHI J, ZHANG B, WANG W, et al. In situ produced hydrogen peroxide by biosynthesized Palladium nanoparticles and natural clay mineral for Highly-efficient Carbamazepine degradation [J]. Chemical Engineering Journal, 2021, 426: 131567. doi: 10.1016/j.cej.2021.131567
|
[28] |
MORADI M, GHANBARI F. Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton process: Biodegradability improvement [J]. Journal of Water Process Engineering, 2014, 4: 67-73. doi: 10.1016/j.jwpe.2014.09.002
|
[29] |
PATIDAR R, SRIVASTAVA V C. Ultrasound-Induced Intensification of Electrochemical Treatment of Bulk Drug Pharmaceutical Wastewater [J]. ACS ES&T Water, 2021, 1(8): 1941-1954.
|
[30] |
LI X, KANG B, DONG F, et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies [J]. Nano Energy, 2021, 81: 105671. doi: 10.1016/j.nanoen.2020.105671
|
[31] |
TOYAO T, SAITO M, HORIUCHI Y, et al. Efficient hydrogen production and photocatalytic reduction of nitrobenzene over a visible-light-responsive metal-organic framework photocatalyst [J]. Catalysis Science & Technology, 2013, 3(8): 2092-2097.
|