[1] |
自然资源部. 2022 年全国矿产资源储量统计表[EB/OL]. [2023-04-12]. https://www.mnr.gov.cn/sj/sjfw/kc_19263/kczycltjb/202306/t20230616_2791726.html.
|
[2] |
孙亚军, 张莉, 徐智敏, 等. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展[J]. 煤炭学报, 2022, 47(1): 423 − 437. doi: 10.13225/j.cnki.jccs.YG21.1937
|
[3] |
余小林, 王沙沙, 章玥, 等. 矿井闭坑后地下水污染机理及防治综述[J]. 科技创新与应用, 2022, 12(35): 137 − 140.
|
[4] |
代力, 邓杰. 川南典型硫铁矿区土壤污染调查方法[J]. 矿产综合利用, 2022(3): 113 − 120.
|
[5] |
项赟, 温晓晴, 邱郴, 等. 典型废弃硫铁矿区环境风险分级研究及应用[J]. 有色金属工程, 2023, 13(4): 136 − 144. doi: 10.3969/j.issn.2095-1744.2023.04.017
|
[6] |
冯博, 周皓, 徐阳, 等. 矿区农地重金属污染风险评价—基于改进的模糊综合评价法[J]. 有色金属工程, 2022, 12(2): 138 − 145.
|
[7] |
赵玉灵. 基于层次分析法的矿山环境评价方法研究—以海南岛为例[J]. 国土资源遥感, 2020, 32(1): 148 − 153.
|
[8] |
何宣利. 湖南某矿区土壤重金属污染生态风险评价[D]. 长沙: 湖南师范大学, 2018.
|
[9] |
刘宏波. 全国矿区周边土壤重金属浓度变化分析与风险评价[D]. 赣州: 江西理工大学, 2022.
|
[10] |
郭子一, 刘建荣, 郭志宾, 等. 我国煤系共伴生矿产资源综合利用研究进展[J]. 矿产保护与利用, 2022, 42(6): 1 − 9.
|
[11] |
刘盼盼. 年度全国矿产资源储量统计数据发布[N]. 中国矿业报, 2023-06-16(001).
|
[12] |
矿产资源研究所. 中国硫铁矿资源开发利用图 [EB/OL]. [2023-05-15]. https://geocloudproducts.cgs.gov.cn/dzzlfw/idx/fileView.do?dzcp_id=8a8889b96677dc1301667bfc42f401fd&path=https://geocloudproducts.cgs.gov.cn/dzxxcp/admin_file/core/file/toView.do?id=f8181a3efe2545d0b37855e882d7a077&t=deepzoom&providerid=4028803a518fe41c0151a47891240027.
|
[13] |
冯安生, 海东婧, 吕振福, 等. 我国硫铁矿资源开发利用“三率”调查与评价[J]. 矿产保护与利用, 2016(5): 40 − 43. doi: 10.13779/j.cnki.issn1001-0076.2016.05.010
|
[14] |
韦旭东. 硫铁矿耕地系统铊的健康风险评价与污染示踪研究[D]. 广州: 广州大学环境科学与工程学院, 2020.
|
[15] |
廖禄云, 杨在文, 杨放, 等. 西南地区硫铁矿和高硫煤矿AMD的环境问题及其治理对策[J]. 成都理工大学学报(自然科学版), 2021, 48(6): 754 − 761.
|
[16] |
段飘飘. 西南地区高硫煤有害元素地球化学特征及其洗选分配规律[D]. 北京: 中国矿业大学, 2017.
|
[17] |
LIU J, LI N, ZHANG W, et al. Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks[J]. Environmental Pollution, 2019, 248: 906 − 915. doi: 10.1016/j.envpol.2019.02.092
|
[18] |
王婧, 马奎羽, 温延星. 河北省硫铁矿成矿区带划分及成矿规律[J]. 中国非金属矿工业导刊, 2022(3): 5 − 10.
|
[19] |
成晓梦, 孙彬彬, 吴超, 等. 浙中典型硫铁矿区农田土壤重金属含量特征及健康风险[J]. 环境科学, 2022, 43(1): 442 − 453. doi: 10.13227/j.hjkx.202102161
|
[20] |
毛盼, 王明娅, 孙昂, 等. 某典型废弃硫酸场地土壤重金属污染特征与评价[J]. 环境化学, 2022, 41(2): 511 − 525.
|
[21] |
尹高科, 周红春, 张清, 等. 河南偃龙煤田深部硫铁矿地质特征[J]. 矿产与地质, 2020, 34(5): 880 − 888. doi: 10.19856/j.cnki.issn.1001-5663.2020.05.005
|
[22] |
KEFENI K K, MAMABA B B. Charcoal ash leachate and its sparingly soluble residue for acid mine drainage treatment: Waste for pollution remediation and dual resource recovery[J]. Journal of Cleaner Production, 2021(320): 128717.
|
[23] |
FAVAS P J C. Chapter 17 - Acid Mine Drainages From Abandoned Mines: Hydrochemistry, Environmental Impact, Resource Recovery, and Prevention of Pollution, Environmental Materials and Waste Resource Recovery and Pollution Prevention[M]. Amsterdam: Elsevier, 2016: 413-462.
|
[24] |
IGHALO J O, KURNIAWAN S B, IWUOZOR K O, et al. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD)[J]. Process Safety and Environmental Protection, 2022, 157: 37-58.
|
[25] |
COSTIS S, MUELLER K K, COUDERT L, et al. Recovery potential of rare earth elements from mining and industrial residues: A review and cases studies[J]. Journal of Geochemical Exploration, 2021, 221: 106699.
|
[26] |
付向成. 硫铁矿选矿现状与发展探讨[J]. 地球, 2016(2): 96.
|
[27] |
LOUIS A M, YU H, SHUMLAS S L, et al. Effect of Phospholipid on Pyrite Oxidation and Microbial Communities under Simulated Acid Mine Drainage (AMD) Conditions. Environmental Science & Technology[J], 2015.49(13): 7701-7708.
|
[28] |
张丽军, 王晓慧. 硫铁矿选矿概述[J]. 矿产综合利用, 2016(1): 18 − 21.
|
[29] |
韩小宾, 杨丽, 熊超, 等. 某硫铁矿场地土壤重金属污染特征及健康风险评估[J]. 有色金属(矿山部分), 2022, 74(3): 128 − 132.
|
[30] |
常宝孟. 金矿尾矿库重金属释放规律及污染风险研究[D]. 北京: 北京科技大学安全科学与工程学院, 2023.
|
[31] |
SINGH A K. Toxic aqueous discharge of iron and sulphur from spoiled coal mined lands and its control by phytostabilization process[J]. Current Science, 2018, 115(3): 529 − 534. doi: 10.18520/cs/v115/i3/529-534
|
[32] |
WANG C, LIU J X, GENG H, et al. Water quality analysis and pollution evaluation of the main rivers in the Tongling mining area[J]. Earth Science Frontiers, 2021, 28(4): 175 − 183.
|
[33] |
张志永, 万成炎, 胡红青, 等. 长江中上游表层沉积物重金属形态分布特征及风险评价[J]. 环境科学, 2023, 44(2): 11.
|
[34] |
KHARAKA M, MAEST A S. Water-Rock Interaction: Proceedings. Volume 1, Low temperature environments[J]. Geology 1992(31): 381-384.
|
[35] |
CHEN A, LIN C, LU W, et al. Well water contaminated by acidic mine water from the Dabaoshan Mine, South China: Chemistry and toxicity[J]. Chemosphere, 2008, 70(2): 248 − 255.
|
[36] |
ZHANG J, TIAN L, PEI S. A discussion of soil and water pollution and control countermeasures in mining area of China[J]. Hydrogeology & Engineering Geology, 2022, 48(2): 157 − 163.
|
[37] |
朱阁. 安徽铜陵典型金属矿山地下水环境特征与重金属迁移规律研究[D]. 北京: 中国地质大学(北京), 2018.
|
[38] |
LIU Y, WEI L, WU Q, et al. Impact of acid mine drainage on groundwater hydrogeochemistry at a pyrite mine (South China): a study using stable isotopes and multivariate statistical analyses[J]. Environmental Geochemistry and Health, 2022, 45(3): 771 − 785.
|
[39] |
陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10): 20.
|
[40] |
刘付真. 矿山不同区域土壤中重金属的污染特征[J]. 湖南农业科学, 2022(4): 42 − 45.
|
[41] |
党志, 姚谦, 陈锴, 等. 粤北大宝山矿区污染成因与源头控制技术应用进展[J]. 农业环境科学学报, 2021, 40(7): 1377 − 1386.
|
[42] |
GUO J, XUAN F, LI D, et al. Variations of Soil Chemical Properties and Microbial Community around the Acid Reservoir in the Mining Area[J]. Sustainability, 2022, 14(17): 10746. doi: 10.3390/su141710746
|
[43] |
LI B, WANG X, LIU G, et al. Microbial diversity response to geochemical gradient characteristics on AMD from abandoned Dashu pyrite mine in Southwest China[J]. Environmental Science and Pollution Research, 2022, 29(49): 74983 − 74997. doi: 10.1007/s11356-022-21031-1
|
[44] |
李思佳, 丁森旭, 余杰, 等. 基于多评估法的硫铁矿区土壤重金属污染特征及源分析[J]. 有色金属(冶炼部分), 2023(5): 120 − 128.
|
[45] |
杜梅, 杨俊, 刘君, 等. 矿区尾矿重金属环境风险评价方法综述[J]. 环境与可持续发展, 2021, 46(6): 143 − 151.
|
[46] |
杨宏. 锡矿山重金属污染物迁移机制及其环境效应[D]. 长沙: 湖南大学, 2017.
|
[47] |
ZENG X, BAI L, GAO X, et al. Agricultural planning by selecting food crops with low arsenic accumulation to efficiently reduce arsenic exposure to human health in an arsenic-polluted mining region[J]. Journal of Cleaner Production, 2021, 308: 127403. doi: 10.1016/j.jclepro.2021.127403
|
[48] |
QIN W, HAN D, SONG X, et al. Sources and migration of heavy metals in a karst water system under the threats of an abandoned Pb-Zn mine, Southwest China[J]. Environmental Pollution, 2021(638): 116774.
|
[49] |
SANTOS E S. Hazard Assessment of Soils and Spoils From the Portuguese Iberian Pyrite Belt Mining Areas and Their Potential Reclamation[M]. Amsterdam: Elsevier, 2017: 63-88.
|
[50] |
HANKANSON L. An ecological risk index for aquatic pollution control: a sediment logical approach[J]. Water Research, 1980, 14(8): 975 − 1001. doi: 10.1016/0043-1354(80)90143-8
|
[51] |
US EPA. Guidelines for the Health Risk Assessment of Chemical Mixtures [R]. US Environmental Protection Agency, Washington, DC, 1986
|
[52] |
US EPA. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual, (Part A) [R]. vol. 1. Office of Emergency and Remedial Response, Washington, DC, 1989.
|
[53] |
LIU X, CHEN S, YAN X, et al. Evaluation of potential ecological risks in potential toxic elements contaminated agricultural soils: Correlations between soil contamination and polymetallic mining activity.[J]. Journal of Environmental Management, 2021, 300: 113679. doi: 10.1016/j.jenvman.2021.113679
|
[54] |
CHEN Z Y, ZHAO Y Y, CHEN D L, et al. Ecological risk assessment and early warning of heavy metal cumulation in the soils near the Luanchuan molybdenum polymetallic mine concentration area, Henan Province, central China[J]. China Geology, 2023, 6(1): 15 − 26.
|
[55] |
ZHANG H W, ZHANG F, SONG J, et al. Pollutant source, ecological and human health risks assessment of heavy metals in soils from coal mining areas in Xinjiang, China[J]. Environmental research, 2021, 202: 111702. doi: 10.1016/j.envres.2021.111702
|
[56] |
HELSER J, VASSILIEVA E, CAPPUYNS V. Environmental and human health risk assessment of sulfidic mine waste: Bioaccessibility, leaching and mineralogy. [J]. Journal of Hazardous Materials, 2022, 424(Pt A): 127313.
|
[57] |
QIU H L, GUI H, XU H F, et al. Occurrence, controlling factors and noncarcinogenic risk assessment based on Monte Carlo simulation of fluoride in mid-layer groundwater of Huaibei mining area, North China[J]. Science of The Total Environment, 2023, 856(2): 159112.
|
[58] |
熊鸿斌, 张含笑, 陈神剑. 基于Monte Carlo模拟的某污染场地土壤重金属健康风险评估研究[J]. 合肥工业大学学报(自然科学版), 2022, 45(2): 267 − 273.
|