[1] 屈凡玉, 李言瑞, 杨彬. 积极安全有序发展核电 助力“双碳”目标顺利实现[J]. 能源, 2022(12): 38-43. QU F Y, LI Y R, YANG B. Actively, safely and orderly developing nuclear power to help achieve the goal of “double carbon”[J]. Energy, 2022(12): 38-43 (in Chinese).
[2] KONDO Y, GOTO T, SEKINO T. Sr2+ sorption property of seaweed-like sodium titanate mats: Effects of crystallographic properties[J]. RSC Advances, 2021, 11(30): 18676-18684. doi: 10.1039/D1RA03088D
[3] 肖雨生. 中国核电发展与乏燃料贮存及后处理的关系[J]. 电工技术, 2020(18): 24-25,57. XIAO Y S. Relationship between China’s nuclear power development and spent fuel storage and reprocessing[J]. Electric Engineering, 2020(18): 24-25,57 (in Chinese).
[4] 孙学智, 罗朝晖. 全球乏燃料后处理现状与分析[J]. 核安全, 2016, 15(2): 13-16. SUN X Z, LUO Z H. Status of global spent fuel reprocessing[J]. Nuclear Safety, 2016, 15(2): 13-16 (in Chinese).
[5] 王驹, 陈伟明, 苏锐, 等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4): 801-812. WANG J, CHEN W M, SU R, et al. Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 801-812 (in Chinese).
[6] ANDERSSON J, ROBINSON P, IMPEY M. Implications of rock structure on the performance in the near field of a nuclear waste repository[J]. Engineering Geology, 1998, 49(3/4): 195-200.
[7] CASTAING R. Un modele simple pour la migration de radionucleides par transport colloidal dans un milieu fracture[J]. Journal of Hydrology, 1991, 125(1/2): 55-92.
[8] WANG L T, CHENG J F, BAO C Y, et al. Simulation of nuclide migration in a middle- and low-level radioactive waste repository based on GMS[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(5): 2159-2167. doi: 10.1007/s10967-022-08260-x
[9] WEI G L, HAN W H, SHU X Y, et al. Heavy-ion irradiation effects on uranium-contaminated soil for nuclear waste[J]. Journal of Hazardous Materials, 2021, 405: 124273. doi: 10.1016/j.jhazmat.2020.124273
[10] LI L N, MA W, SHEN S S, et al. A combined experimental and theoretical study on the extraction of uranium by amino-derived metal–organic frameworks through post-synthetic strategy[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 31032-31041.
[11] KOU J S, WEI X Y, WU H, et al. Efficient adsorptive and reductive removal of U(VI) and Se(IV) using porous hexagonal boron nitride supported nanoscale iron sulfide: Performance and mechanism[J]. Journal of Molecular Liquids, 2022, 359: 119355. doi: 10.1016/j.molliq.2022.119355
[12] WINTHER K H, RAYMAN M P, BONNEMA S J, et al. Selenium in thyroid disorders—Essential knowledge for clinicians[J]. Nature Reviews Endocrinology, 2020, 16(3): 165-176. doi: 10.1038/s41574-019-0311-6
[13] CUI D, LOW J, RONDINELLA V V, et al. Hydrogen catalytic effects of nanostructured alloy particles in spent fuel on radionuclide immobilization[J]. Applied Catalysis B:Environmental, 2010, 94(1/2): 173-178.
[14] JUN B M, LEE H K, PARK S, et al. Purification of uranium-contaminated radioactive water by adsorption: A review on adsorbent materials[J]. Separation and Purification Technology, 2021, 278: 119675. doi: 10.1016/j.seppur.2021.119675
[15] LICHTFOUSE E, MORIN-CRINI N, BRADU C, et al. Methods for selenium removal from contaminated waters: A review[J]. Environmental Chemistry Letters, 2022, 20(3): 2019-2041. doi: 10.1007/s10311-022-01419-8
[16] HU B W, YE F, REN X M, et al. X-ray absorption fine structure study of enhanced sequestration of U(Ⅵ) and Se(Ⅳ) by montmorillonite decorated with zero-valent iron nanoparticles[J]. Environmental Science:Nano, 2016, 3(6): 1460-1472. doi: 10.1039/C6EN00421K
[17] ZHAO B, SUN Z X, LIU Y J. An overview of in situ remediation for nitrate in groundwater[J]. Science of the Total Environment, 2022, 804: 149981. doi: 10.1016/j.scitotenv.2021.149981
[18] 曾映达, 程银汉, 瞿广飞, 等. 固体废物中重金属的固化/稳定化技术研究进展[J]. 环境化学, 2023, 42(6): 2032-2047. doi: 10.7524/j.issn.0254-6108.2021122704 ZENG Y D, CHENG Y H, QU G F, et al. Review on solidification/stabilization of heavy metals in solid waste[J]. Environmental Chemistry, 2023, 42(6): 2032-2047 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021122704
[19] 王杨. 岩棉负载纳米零价金属去除溶液中U(Ⅵ)的性能与机理研究[D]. 抚州: 东华理工大学, 2022. WANG Y. Study on the performance and mechanism of removing U(Ⅵ) from solution by nano-zero-valent metal loaded on rock wool[D]. Fuzhou: East China Institute of Technology, 2022 (in Chinese).
[20] CURCIO G M, LIMONTI C, SICILIANO A, et al. Nitrate removal by zero-valent metals: A comprehensive review[J]. Sustainability, 2022, 14(8): 4500. doi: 10.3390/su14084500
[21] 韩泽蓉, 缪爱军. 金属纳米颗粒的环境行为及其与藻类的相互作用概述[J]. 环境化学, 2023, 42(5): 1466-1483. doi: 10.7524/j.issn.0254-6108.2021112302 HAN Z R, MIAO A J. Environmental behavior of metal nanoparticles and their interactions with planktonic algae: A review[J]. Environmental Chemistry, 2023, 42(5): 1466-1483 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021112302
[22] 陈玉洁, 李小燕, 刘学, 等. 纳米零价镍去除溶液中U(Ⅵ)的研究[J]. 有色金属(冶炼部分), 2019(2): 71-75. CHEN Y J, LI X Y, LIU X, et al. Study on removal of U(Ⅵ)in aqueous solution with nano-zero-valent nickel[J]. Nonferrous Metals (Extractive Metallurgy), 2019(2): 71-75 (in Chinese).
[23] 付晓辉, 王昱莹, 何登武, 等. 维生素B12改性纳米零价镍去除溶液中U(Ⅵ)的性能[J]. 有色金属(冶炼部分), 2021(10): 90-95. FU X H, WANG Y Y, HE D W, et al. Removal of U(Ⅵ)from solution by nano-zero-valent nickel modified by vitamin B12[J]. Nonferrous Metals (Extractive Metallurgy), 2021(10): 90-95 (in Chinese).
[24] LI S, WU Y, NIE F Y, et al. Remediation of nitrate contaminated groundwater using a simulated PRB system with an La–CTAC–modified biochar filler[J]. Frontiers in Environmental Science, 2022, 10: 986866. doi: 10.3389/fenvs.2022.986866
[25] LI S, YANG M X, WANG H, et al. Dynamic characteristics of immobilized microorganisms for remediation of nitrogen-contaminated groundwater and high-throughput sequencing analysis of the microbial community[J]. Environmental Pollution, 2020, 267: 114875. doi: 10.1016/j.envpol.2020.114875