[1] |
金远亮, 侯德义, 田莉, 等. 基于用地规划的污染地块修复多目标优化研究[J]. 中国环境科学, 2021, 41(2): 787-800. doi: 10.3969/j.issn.1000-6923.2021.02.034
JIN Y L, HOU D Y, TIAN L, et al. Multi-objective optimization for brownfield remediation on the basis of land use planning[J]. China Environmental Science, 2021, 41(2): 787-800 (in Chinese). doi: 10.3969/j.issn.1000-6923.2021.02.034
|
[2] |
中华人民共和国生态环境部, 国土资源部. 全国土壤污染状况调查公报[R/OL]
2014-04-17
|
[3] |
BERG M, TRAN H C, NGUYEN T C, et al. Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat[J]. Environmental Science & Technology, 2001, 35(13): 2621-2626.
|
[4] |
侯德义, 张凯凯, 王刘炜, 等. 工业场地重金属污染土壤治理现状与展望[J]. 环境保护, 2021, 49(20): 9-15. doi: 10.14026/j.cnki.0253-9705.2021.20.002
HOU D Y, ZHANG K K, WANG L W, et al. Current status and prospect for the remediation of heavy metal contaminated industrial sites[J]. Environmental Protection, 2021, 49(20): 9-15 (in Chinese). doi: 10.14026/j.cnki.0253-9705.2021.20.002
|
[5] |
YANG B C, MA S X, CUI R J, et al. Novel low-cost simultaneous removal of NO and SO2 with ·OH from decomposition of H2O2 catalyzed by alkali-magnetic modified fly ash[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5339-5347.
|
[6] |
CHEN H X, YUAN H H, MAO L Q, et al. Stabilization/solidification of chromium-bearing electroplating sludge with alkali-activated slag binders[J]. Chemosphere, 2020, 240: 124885. doi: 10.1016/j.chemosphere.2019.124885
|
[7] |
GUERRINI I A, CROCE C G G, de CARVALHO BUENO O, et al. Composted sewage sludge and steel mill slag as potential amendments for urban soils involved in afforestation programs[J]. Urban Forestry & Urban Greening, 2017, 22: 93-104.
|
[8] |
黄丽萍, 马倩敏, 郭荣鑫, 等. 碱矿渣胶凝材料水化产物的实验研究[J]. 硅酸盐通报, 2020, 39(4): 1194-1200.
HUANG L P, MA Q M, GUO R X, et al. Experimental study on hydration products of alkali-activated slag[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(4): 1194-1200 (in Chinese).
|
[9] |
CHEN Z L, LU S Y, TANG M H, et al. Mechanical activation of fly ash from MSWI for utilization in cementitious materials[J]. Waste Management, 2019, 88: 182-190. doi: 10.1016/j.wasman.2019.03.045
|
[10] |
YIN B, KANG T H, KANG J T, et al. Analysis of active ion-leaching behavior and the reaction mechanism during alkali activation of low-calcium fly ash[J]. International Journal of Concrete Structures and Materials, 2018, 12(1): 1-13. doi: 10.1186/s40069-018-0237-8
|
[11] |
DING J, MA S H, SHEN S, et al. Research and industrialization progress of recovering alumina from fly ash: A concise review[J]. Waste Management, 2017, 60: 375-387. doi: 10.1016/j.wasman.2016.06.009
|
[12] |
陈梦舫. 我国工业污染场地土壤与地下水重金属修复技术综述[J]. 中国科学院院刊, 2014, 29(3): 327-335.
CHEN M F. Review on heavy metal remediation technology of soil and groundwater at industrially contaminated site in China[J]. Bulletin of Chinese Academy of Sciences, 2014, 29(3): 327-335 (in Chinese).
|
[13] |
SHEN Z T, JIN F, O'CONNOR D, et al. Solidification/stabilization for soil remediation: An old technology with new vitality[J]. Environmental Science & Technology, 2019, 53(20): 11615-11617.
|
[14] |
赵述华, 陈志良, 张太平, 等. 重金属污染土壤的固化/稳定化处理技术研究进展[J]. 土壤通报, 2013, 44(6): 1531-1536. doi: 10.19336/j.cnki.trtb.2013.06.044
ZHAO S H, CHEN Z L, ZHANG T P, et al. Advances in solidification/stabilization technology treatment of heavy metals in contaminated soils[J]. Chinese Journal of Soil Science, 2013, 44(6): 1531-1536 (in Chinese). doi: 10.19336/j.cnki.trtb.2013.06.044
|
[15] |
WEN J, YI Y J, ZENG G M. Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction[J]. Journal of Environmental Management, 2016, 178: 63-69. doi: 10.1016/j.jenvman.2016.04.046
|
[16] |
吕鹏, 李莲芳, 黄晓雅. 改性生物炭修复砷镉复合污染土壤研究进展[J].环境科学, 2023, 44(7): 4077-4090.
LÜ P, LI L F, HUANG X Y. Modified Biochar for Remediation of Soil Contaminated with Arsenic and Cadmium: A Review[J]. Environmental Science, 2023, 44(7): 4077-4090(in Chinese).
|
[17] |
韦婧, 刘昳晗, 涂晨, 等. 铁修饰生物炭的制备及在砷污染土壤修复中的应用[J]. 环境科学, 2023, 44(2): 965-974. doi: 10.13227/j.hjkx.202203011
WEI J, LIU Y H, TU C, et al. Preparation of iron-modified biochar and its application in arsenic contaminated soil remediation[J]. Environmental Science, 2023, 44(2): 965-974 (in Chinese). doi: 10.13227/j.hjkx.202203011
|
[18] |
官迪, 吴家梅, 谢运河, 等. 铁基硅盐对土壤环境镉砷赋存形态及转化影响[J]. 中国环境科学, 2022, 42(4): 1803-1811. doi: 10.3969/j.issn.1000-6923.2022.04.036
GUAN D, WU J M, XIE Y H, et al. Effects of Iron-based silicon salts on fractions and transformation of cadmium and arsenic in soil environment[J]. China Environmental Science, 2022, 42(4): 1803-1811 (in Chinese). doi: 10.3969/j.issn.1000-6923.2022.04.036
|
[19] |
向罗京, 苏趋, 孙刚, 等. 典型医药企业聚集区土壤重金属污染特征及成因分析[J]. 环境化学, 2022, 41(6): 2022-2034. doi: 10.7524/j.issn.0254-6108.2021092402
XIANG L J, SU Q, SUN G, et al. Characteristics and causes of soil heavy metal pollution in typical pharmaceutical enterprise gathering areas[J]. Environmental Chemistry, 2022, 41(6): 2022-2034 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021092402
|
[20] |
MÜLLER G. Index of geoaccumulation in sediments of the Rhine River[J]. Geology Journal, 1969, 2: 108-118.
|
[21] |
国家质量监督检验检疫总局, 国家标准化管理委员会. 中华人民共和国国家标准: 用于水泥和混泥土中的粉煤灰 GB/T 664—2011[S]. 北京: 中国标准出版社, 2018.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China Standardization administration. National Standard (Mandatory) of the People’s Republic of China: Fly Ash used for cement and concrete. GB/T 664—2011[S]. Beijing: Standards Press of China, 2018 (in Chinese).
|
[22] |
XIA W Y, FENG Y S, DU Y J, et al. Solidification and stabilization of heavy metal–contaminated industrial site soil using KMP binder[J]. Journal of Materials in Civil Engineering, 2018, 30(6): 04018080. doi: 10.1061/(ASCE)MT.1943-5533.0002264
|
[23] |
黄安林. 不同钝化材料及其复配对农田土壤中砷的钝化效果研究[D]. 海口: 海南大学, 2020.
HUANG A L. Study on the passivation effect of different passivation materials and their compounds on arsenic in farmland soil[D]. Haikou: Hainan University, 2020 (in Chinese).
|
[24] |
ZHA F S, PAN D D, XU L, et al. Investigations on engineering properties of solidified/stabilized Pb-contaminated soil based on alkaline residue[J]. Advances in Civil Engineering, 2018, 2018: 1-9.
|
[25] |
焦常锋, 常会庆, 王启震, 等. 碳酸钙和壳聚糖联用对高pH值石灰性土壤砷污染的钝化[J]. 农业工程学报, 2020, 36(11): 234-240. doi: 10.11975/j.issn.1002-6819.2020.11.027
JIAO C F, CHANG H Q, WANG Q Z, et al. Passivation effects of calcium carbonate and chitosan on arsenic pollution in high pH calcareous soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 234-240 (in Chinese). doi: 10.11975/j.issn.1002-6819.2020.11.027
|
[26] |
王鑫. 亚铁盐对固废/土壤中重金属的稳定化作用及机理研究[D]. 武汉: 华中科技大学, 2018.
WANG X. Stabilization treatment of heavy metal contaminated solid wastes/soils by ferrous salt[D]. Wuhan: Huazhong University of Science and Technology, 2018 (in Chinese).
|
[27] |
张向军. 石灰、粉煤灰处理Cd、Pb、Cr污染土壤的实验研究[D]. 重庆: 重庆大学, 2009.
ZHANG X J. Experimental study on the treatment of Cd, Pb and Cr-polluted soil with lime and fly ash[D]. Chongqing: Chongqing University, 2009 (in Chinese).
|
[28] |
生态环境部. 中华人民共和国国家标准: 固体废物浸出毒性浸出方法-硫酸硝酸法HJ/T 299-2007 [S]. 北京: 中国环境科学出版社, 2007.
Ministry of Ecology and Environment of the People's Republic of China. National Standard (Mandatory) of the People's Republic of China: Solid waste-extraction procedure for leaching toxicity-sulphuric acid & nitric acid method. HJ/T 299-2007 [S]. Beijing: China Environment Science Press, 2007(in Chinese).
|
[29] |
WENZEL W W, KIRCHBAUMER N, PROHASKA T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure[J]. Analytica Chimica Acta, 2001, 436(2): 309-323. doi: 10.1016/S0003-2670(01)00924-2
|
[30] |
生态环境部. 中华人民共和国国家标准: 土壤pH值的测定 电位法. HJ 962—2018 [S]. 北京: 中国环境科学出版社, 2018.
Ministry of Ecology and Environment of the People’s Republic of China. National Standard (Mandatory) of the People’s Republic of China: Soil — Determination of pH — Potentiometry. HJ 962—2018 [S]. Beijing: China Environment Science Press, 2018(in Chinese).
|
[31] |
中华人民共和国环境保护部. 土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法: HJ 803—2016[S]. 北京: 中国环境科学出版社, 2016.
Ministry of Environmental Protection of the People's Republic of China. Soil and sediment-Determination of aqua regia extracts of 12 metal elements-Inductively coupled plasma mass spectrometry: HJ 803—2016[S]. Beijing: China Environmental Science Press, 2016(in Chinese).
|
[32] |
GELDART D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5): 285-292. doi: 10.1016/0032-5910(73)80037-3
|
[33] |
DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35(2): 429-441. doi: 10.1007/BF01904446
|
[34] |
DAVIDOVITS J. Geopolymers chemistry and application[M]. Saint-Quentin: National Defense Press, 2008: 41-42.
|
[35] |
陆厚根. 粉体技术导论[M]. 2版. 上海: 同济大学出版社, 1998.
LU H G. Introduction to powder technology[M]. 2nd ed. Shanghai: Tongji University Press, 1998(in Chinese).
|
[36] |
霍丽娟. 水铁矿纳米材料对土壤中砷的吸附固定及其稳定化反应机制[D]. 北京: 中国农业科学院, 2017.
HUO L J. Study on the mechanisms of arsenic sorption and stabilization in soils using ferrihydrite nanoparticles[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017 (in Chinese).
|
[37] |
KIM J Y, DAVIS A P, KIM K W. Stabilization of available arsenic in highly contaminated mine tailings using iron[J]. Environmental Science & Technology, 2003, 37(1): 189-195.
|
[38] |
SEIDEL H, GÖRSCH K, AMSTÄTTER K, et al. Immobilization of arsenic in a tailings material by ferrous iron treatment[J]. Water Research, 2005, 39(17): 4073-4082. doi: 10.1016/j.watres.2005.08.001
|
[39] |
MOORE T J, RIGHTMIRE C M, VEMPATI R K. Ferrous iron treatment of soils contaminated with arsenic-containing wood-preserving solution[J]. Journal of Soil Contamination, 2000, 9(4): 375-405. doi: 10.1080/10588330091134310
|
[40] |
GOH K H, LIM T T. Geochemistry of inorganic arsenic and selenium in a tropical soil: Effect of reaction time, pH, and competitive anions on arsenic and selenium adsorption[J]. Chemosphere, 2004, 55(6): 849-859. doi: 10.1016/j.chemosphere.2003.11.041
|
[41] |
陈静, 王学军, 朱立军. pH对砷在贵州红壤中的吸附的影响[J]. 土壤, 2004, 36(2): 211-214. doi: 10.3321/j.issn:0253-9829.2004.02.020
CHEN J, WANG X J, ZHU L J. Effect of ph on adsorption and transformation of arsenic in red soil in Guizhou[J]. Soils, 2004, 36(2): 211-214 (in Chinese). doi: 10.3321/j.issn:0253-9829.2004.02.020
|
[42] |
卢聪, 李青青, 罗启仕, 等. 场地土壤中有效态砷的稳定化处理及机理研究[J]. 中国环境科学, 2013, 33(2): 298-304. doi: 10.3969/j.issn.1000-6923.2013.02.016
LU C, LI Q Q, LUO Q S, et al. Stabilization treatment of available arsenic in contaminated soils and mechanism studies[J]. China Environmental Science, 2013, 33(2): 298-304 (in Chinese). doi: 10.3969/j.issn.1000-6923.2013.02.016
|
[43] |
宋宜, 王华伟, 吴雅静, 等. 三价铁促进生物氧化锰稳定土壤砷的效果和机制[J]. 环境科学学报, 2020, 40(4): 1460-1466. doi: 10.13671/j.hjkxxb.2019.0469
SONG Y, WANG H W, WU Y J, et al. Promoting effect and mechanism of Fe(Ⅲ) on the stabilization of arsenic by biogenic Mn oxides in contaminated soil[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1460-1466 (in Chinese). doi: 10.13671/j.hjkxxb.2019.0469
|
[44] |
常春英, 曹浩轩, 陶亮, 等. 固化/稳定化修复后土壤重金属稳定性及再活化研究进展[J]. 土壤, 2021, 53(4): 682-691. doi: 10.13758/j.cnki.tr.2021.04.003
CHANG C Y, CAO H X, TAO L, et al. Advances on heavy metal stability and reactivation for soil after solidification/stabilization remediation[J]. Soils, 2021, 53(4): 682-691 (in Chinese). doi: 10.13758/j.cnki.tr.2021.04.003
|
[45] |
陈子万, 许晶, 侯召雷, 等. 基于成土母质分区的土壤-作物系统重金属累积特征与健康风险评价[J]. 环境科学, 2023, 44(1): 405-414. doi: 10.13227/j.hjkx.202203205
CHEN Z W, XU J, HOU Z L, et al. Accumulation characteristics and health risk assessment of heavy metals in soil-crop system based on soil parent material zoning[J]. Environmental Science, 2023, 44(1): 405-414 (in Chinese). doi: 10.13227/j.hjkx.202203205
|
[46] |
赵亮, 唐泽军, 刘芳. 粉煤灰改良沙质土壤水分物理性质的室内实验[J]. 环境科学学报, 2009, 29(9): 1951-1957. doi: 10.3321/j.issn:0253-2468.2009.09.024
ZHAO L, TANG Z J, LIU F. Laboratory tests of fly ash as a sandy soil amendment and its effects on soil water[J]. Acta Scientiae Circumstantiae, 2009, 29(9): 1951-1957 (in Chinese). doi: 10.3321/j.issn:0253-2468.2009.09.024
|
[47] |
KALINSKI M E, YERRA P K. Hydraulic conductivity of compacted cement-stabilized fly ash[J]. Fuel, 2006, 85(16): 2330-2336. doi: 10.1016/j.fuel.2006.04.030
|
[48] |
杨忠兰, 曾希柏, 孙本华, 等. 铁氧化物固定土壤重金属的研究进展[J]. 土壤通报, 2021, 52(3): 728-735. doi: 10.19336/j.cnki.trtb.2020102801
YANG Z L, ZENG X B, SUN B H, et al. Research advances on the fixation of soil heavy metals by iron oxide[J]. Chinese Journal of Soil Science, 2021, 52(3): 728-735 (in Chinese). doi: 10.19336/j.cnki.trtb.2020102801
|
[49] |
王璐莹, 秦雷, 吕宪国, 等. 铁促进土壤有机碳累积作用研究进展[J]. 土壤学报, 2018, 55(5): 1041-1050. doi: 10.11766/trxb201802260035
WANG L Y, QIN L, LÜ X G, et al. Progress in researches on effect of iron promoting accumulation of soil organic carbon[J]. Acta Pedologica Sinica, 2018, 55(5): 1041-1050 (in Chinese). doi: 10.11766/trxb201802260035
|
[50] |
MIKUTTA R, KLEBER M, TORN M S, et al. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance?[J]. Biogeochemistry, 2006, 77(1): 25-56. doi: 10.1007/s10533-005-0712-6
|
[51] |
国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国环境科学出版社, 2002.
State Environmental Protection Administration of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Environmental quality standards for surface water: GB 3838—2002[S]. Beijing: China Environmental Science Press, 2002(in Chinese).
|
[52] |
国家质量监督检验检疫总局, 国家标准化管理委员会. 地下水质量标准GB/T 14848—2017. 北京: 中国环境科学出版社, 2017.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China Standardization administration. National Standard (Mandatory) of the People’s Republic of China: Standard for groundwater quality GB/T 14848—2017 [S]. Beijing: China Environment Science Press, 2017(in Chinese).
|