[1] |
城镇污水处理厂水污染物排放标准(DB11/890-2012)[S]. 北京: 北京市环境保护科学研究院, [2012-05-03].
Discharge standard of water pollutants for municipal wastewater treatment plants (DB11/890-2012)[S]. Beijing:Beijing Municipal Research Institute of Environmental Protection, [2012-05-03] (in Chinese).
|
[2] |
KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276. doi: 10.1038/nrmicro.2018.9
|
[3] |
陈举烽. 污水深度脱氮技术研究进展[J]. 科技与创新, 2022(22): 64-66,69. doi: 10.15913/j.cnki.kjycx.2022.22.018
CHEN J F. Research progress of advanced denitrification technology for wastewater[J]. Science and Technology & Innovation, 2022(22): 64-66,69 (in Chinese). doi: 10.15913/j.cnki.kjycx.2022.22.018
|
[4] |
王慰, 王淑莹, 张琼, 等. 后置缺氧UCT分段进水工艺处理低C/N城市污水[J]. 中国环境科学, 2016, 36(7): 1997-2005. doi: 10.3969/j.issn.1000-6923.2016.07.014
WANG W, WANG S Y, ZHANG Q, et al. Post-anoxic UCT step-feed process in treating municipal wastewater with low C/N ratios[J]. China Environmental Science, 2016, 36(7): 1997-2005 (in Chinese). doi: 10.3969/j.issn.1000-6923.2016.07.014
|
[5] |
薛旭. 污水提标改造中后置反硝化脱总氮工艺技术探讨[J]. 石油化工安全环保技术, 2019, 35(5): 60-65,75. doi: 10.3969/j.issn.1673-8659.2019.05.017
XUE X. Discussion on post-denitrification technology for total nitrogen removal in wastewater upgrading[J]. Petrochemical Safety and Environmental Protection Technology, 2019, 35(5): 60-65,75 (in Chinese). doi: 10.3969/j.issn.1673-8659.2019.05.017
|
[6] |
COATS E R, MOCKOS A, LOGE F J. Post-anoxic denitrification driven by PHA and glycogen within enhanced biological phosphorus removal[J]. Bioresource Technology, 2011, 102(2): 1019-1027. doi: 10.1016/j.biortech.2010.09.104
|
[7] |
ABUFAYED A A, SCHROEDER E D. Kinetics and stoichiometry of SBR/denitrification with a primary sludge carbon source[J]. Journal (Water Pollution Control Federation), 1986, 58(5): 398-405.
|
[8] |
MIELCAREK A, RODZIEWICZ J, JANCZUKOWICZ W, et al. The impact of biodegradable carbon sources on nutrients removal in post-denitrification biofilm reactors[J]. Science of the Total Environment, 2020, 720: 137377. doi: 10.1016/j.scitotenv.2020.137377
|
[9] |
HU X, WISNIEWSKI K, CZERWIONKA K, et al. Modeling the effect of external carbon source addition under different electron acceptor conditions in biological nutrient removal activated sludge systems[J]. Environmental Science & Technology, 2016, 50(4): 1887-1896.
|
[10] |
XU Z S, DAI X H, CHAI X L. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes[J]. Science of the Total Environment, 2018, 634: 195-204. doi: 10.1016/j.scitotenv.2018.03.348
|
[11] |
CAO S B, SUN F Q, LU D, et al. Characterization of the refractory dissolved organic matters (rDOM) in sludge alkaline fermentation liquid driven denitrification: Effect of HRT on their fate and transformation[J]. Water Research, 2019, 159: 135-144. doi: 10.1016/j.watres.2019.04.063
|
[12] |
PAN Z L, ZHOU J, LIN Z Y, et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process[J]. Bioresource Technology, 2020, 301: 122726. doi: 10.1016/j.biortech.2019.122726
|
[13] |
胡国山, 张建美, 蔡惠军. 碳源、C/N和温度对生物反硝化脱氮过程的影响[J]. 科学技术与工程, 2016, 16(14): 74-77,106. doi: 10.3969/j.issn.1671-1815.2016.14.015
HU G S, ZHANG J M, CAI H J. Effect of carbon source, C/N ratio and temperature on biological denitrification process[J]. Science Technology and Engineering, 2016, 16(14): 74-77,106 (in Chinese). doi: 10.3969/j.issn.1671-1815.2016.14.015
|
[14] |
孙洪伟, 郭英, 尤永军, 等. 不同碳氮比(C/N)条件下驯化微生物的反硝化特性[J]. 环境化学, 2014, 33(5): 770-775. doi: 10.7524/j.issn.0254-6108.2014.05.001
SUN H W, GUO Y, YOU Y J, et al. Denitrification characteristic of microbial population tamed at different C/N ratios[J]. Environmental Chemistry, 2014, 33(5): 770-775 (in Chinese). doi: 10.7524/j.issn.0254-6108.2014.05.001
|
[15] |
CHANG N B, WEN D, McKENNA A M, et al. The impact of carbon source as electron donor on composition and concentration of dissolved organic nitrogen in biosorption-activated media for stormwater and groundwater Co-treatment[J]. Environmental Science & Technology, 2018, 52(16): 9380-9390.
|
[16] |
PENG J D, HUANG H, ZHONG Y, et al. Transformation of dissolved organic matter during biological wastewater treatment and relationships with the formation of nitrogenous disinfection byproducts[J]. Water Research, 2022, 222: 118870. doi: 10.1016/j.watres.2022.118870
|
[17] |
GUPTA K, CHELLAM S. Revealing the mechanisms of irreversible fouling during microfiltration–The role of feedwater composition[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107362. doi: 10.1016/j.jece.2022.107362
|
[18] |
MICHAEL-KORDATOU I, MICHAEL C, DUAN X, et al. Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications[J]. Water Research, 2015, 77: 213-248. doi: 10.1016/j.watres.2015.03.011
|
[19] |
ANTONY R, GRANNAS A M, WILLOUGHBY A S, et al. Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet[J]. Environmental Science & Technology, 2014, 48(11): 6151-6159.
|
[20] |
HU H D, LIAO K W, SHI Y J, et al. Effect of solids retention time on effluent dissolved organic nitrogen in the activated sludge process: Studies on bioavailability, fluorescent components, and molecular characteristics[J]. Environmental Science & Technology, 2018, 52(6): 3449-3455.
|
[21] |
HU H D, LIAO K W, WANG J F, et al. Effect of influent carbon-to-nitrogen ratios on the production and bioavailability of microorganism-derived dissolved organic nitrogen (mDON) in activated sludge systems[J]. ACS ES& T Water, 2021, 1(9): 2037-2045.
|
[22] |
ANTONY R, WILLOUGHBY A S, GRANNAS A M, et al. Molecular insights on dissolved organic matter transformation by supraglacial microbial communities[J]. Environmental Science & Technology, 2017, 51(8): 4328-4337.
|
[23] |
PHUNGSAI P, KURISU F, KASUGA I, et al. Changes in dissolved organic matter composition and disinfection byproduct precursors in advanced drinking water treatment processes[J]. Environmental Science & Technology, 2018, 52(6): 3392-3401.
|
[24] |
BROOKER M R, LONGNECKER K, KUJAWINSKI E B, et al. Discrete organic phosphorus signatures are evident in pollutant sources within a Lake Erie tributary[J]. Environmental Science & Technology, 2018, 52(12): 6771-6779.
|
[25] |
郭旭晶, 彭涛, 王月, 等. 湖泊沉积物孔隙水溶解性有机质组成与光谱特性[J]. 环境化学, 2013, 32(1): 79-84. doi: 10.7524/j.issn.0254-6108.2013.01.012
GUO X J, PENG T, WANG Y, et al. Study on the composition and spectral properties of dissolved organic matter extracted from lake sediment pore water in lake[J]. Environmental Chemistry, 2013, 32(1): 79-84 (in Chinese). doi: 10.7524/j.issn.0254-6108.2013.01.012
|
[26] |
SEIDEL M, VEMULAPALLI S P B, MATHIEU D, et al. Marine dissolved organic matter shares thousands of molecular formulae yet differs structurally across major water masses[J]. Environmental Science & Technology, 2022, 56(6): 3758-3769.
|
[27] |
CAI M H, WU Y P, JI W X, et al. Characterizing property and treatability of dissolved effluent organic matter using size exclusion chromatography with an array of absorbance, fluorescence, organic nitrogen and organic carbon detectors[J]. Chemosphere, 2020, 243: 125321. doi: 10.1016/j.chemosphere.2019.125321
|
[28] |
LU H J, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64: 237-254. doi: 10.1016/j.watres.2014.06.042
|
[29] |
魏百惠. 反硝化过程中N2O积累特性及影响因素探究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
WEI B H. Study on N2O accumulation characteristics and influencing factors in denitrification process[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese).
|
[30] |
国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002.
EPA of China. Water and wastewater monitoring analysis method, fourth ed[M]. Beijing: Chinese Environment Science Publisher, 2002 (in Chinese).
|
[31] |
LIAO K W, HU H D, REN H Q. Combined influences of process parameters on microorganism-derived dissolved organic nitrogen (mDON) formation at low temperatures: Multivariable statistical and systematic analysis[J]. Science of the Total Environment, 2020, 744: 140732. doi: 10.1016/j.scitotenv.2020.140732
|
[32] |
ZHANG B L, SHAN C, HAO Z N, et al. Transformation of dissolved organic matter during full-scale treatment of integrated chemical wastewater: Molecular composition correlated with spectral indexes and acute toxicity[J]. Water Research, 2019, 157: 472-482. doi: 10.1016/j.watres.2019.04.002
|
[33] |
CHENG C, GENG J J, ZHOU Z, et al. A novel anoxic/aerobic process coupled with micro-aerobic/anaerobic side-stream reactor filled with packing carriers for in situ sludge reduction[J]. Journal of Cleaner Production, 2021, 311: 127192. doi: 10.1016/j.jclepro.2021.127192
|
[34] |
于淼, 谈思捷, 马国胜, 等. 新型后置缺氧工艺处理农村低C/N废水的影响探究[J]. 水处理技术, 2022, 48(8): 93-97. doi: 10.16796/j.cnki.1000-3770.2022.08.019
YU M, TAN S J, MA G S, et al. Study on treatment of rural low C/N wastewater by new post anoxic process[J]. Technology of Water Treatment, 2022, 48(8): 93-97 (in Chinese). doi: 10.16796/j.cnki.1000-3770.2022.08.019
|
[35] |
HOW S W, CHUA A S M, NGOH G C, et al. Enhanced nitrogen removal in an anoxic-oxic-anoxic process treating low COD/N tropical wastewater: Low-dissolved oxygen nitrification and utilization of slowly-biodegradable COD for denitrification[J]. Science of the Total Environment, 2019, 693: 133526. doi: 10.1016/j.scitotenv.2019.07.332
|
[36] |
ZHANG Y, WANG J, TAO J, et al. Concentrations of dissolved organic matter and methane in lakes in Southwest China: Different roles of external factors and in-lake biota[J]. Water Research, 2022, 225: 119190. doi: 10.1016/j.watres.2022.119190
|
[37] |
ZHANG B L, WANG X N, FANG Z Y, et al. Unravelling molecular transformation of dissolved effluent organic matter in UV/H2O2, UV/persulfate, and UV/chlorine processes based on FT-ICR-MS analysis[J]. Water Research, 2021, 199: 117158. doi: 10.1016/j.watres.2021.117158
|
[38] |
DOMINGO-FÉLEZ C, SMETS B F. Modeling denitrification as an electric circuit accurately captures electron competition between individual reductive steps: The activated sludge model-electron competition model[J]. Environmental Science & Technology, 2020, 54(12): 7330-7338.
|
[39] |
HAO Z N, YIN Y G, CAO D, et al. Probing and comparing the photobromination and photoiodination of dissolved organic matter by using ultra-high-resolution mass spectrometry[J]. Environmental Science & Technology, 2017, 51(10): 5464-5472.
|
[40] |
KELLERMAN A M, DITTMAR T, KOTHAWALA D N, et al. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology[J]. Nature Communications, 2014, 5: 3804. doi: 10.1038/ncomms4804
|
[41] |
ZHANG X N, SUN Y L, MA F, et al. In-situ utilization of soluble microbial product (SMP) cooperated with enhancing SMP-dependent denitrification in aerobic-anoxic sequencing batch reactor[J]. Science of the Total Environment, 2019, 693: 133558. doi: 10.1016/j.scitotenv.2019.07.364
|
[42] |
XU J, SHENG G P, LUO H W, et al. Evaluating the influence of process parameters on soluble microbial products formation using response surface methodology coupled with grey relational analysis[J]. Water Research, 2011, 45(2): 674-680. doi: 10.1016/j.watres.2010.08.032
|
[43] |
KOCH B P, DITTMAR T. From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter[J]. Rapid Communications in Mass Spectrometry, 2016, 30(1): 250. doi: 10.1002/rcm.7433
|
[44] |
TANG G, LI B R, ZHANG B W, et al. Dynamics of dissolved organic matter and dissolved organic nitrogen during anaerobic/anoxic/oxic treatment processes[J]. Bioresource Technology, 2021, 331: 125026. doi: 10.1016/j.biortech.2021.125026
|
[45] |
HUGHEY C A, HENDRICKSON C L, RODGERS R P, et al. Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra[J]. Analytical Chemistry, 2001, 73(19): 4676-4681. doi: 10.1021/ac010560w
|
[46] |
EVANS W C. Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments[J]. Nature, 1977, 270(5632): 17-22. doi: 10.1038/270017a0
|
[47] |
CHEN H, TSAI K P, LIU Y N, et al. Characterization of dissolved organic matter from wildfire-induced Microcystis aeruginosa blooms controlled by copper sulfate as disinfection byproduct precursors using APPI (-) and ESI (-) FT-ICR MS[J]. Water Research, 2021, 189: 116640. doi: 10.1016/j.watres.2020.116640
|
[48] |
何伟, 白泽琳, 李一龙, 等. 溶解性有机质特性分析与来源解析的研究进展[J]. 环境科学学报, 2016, 36(2): 359-372. doi: 10.13671/j.hjkxxb.2015.0117
HE W, BAI Z L, LI Y L, et al. Advances in the characteristics analysis and source identification of the dissolved organic matter[J]. Acta Scientiae Circumstantiae, 2016, 36(2): 359-372 (in Chinese). doi: 10.13671/j.hjkxxb.2015.0117
|
[49] |
MEYERS-SCHULTE K J, HEDGES J I. Molecular evidence for a terrestrial component of organic matter dissolved in ocean water[J]. Nature, 1986, 321(6065): 61-63. doi: 10.1038/321061a0
|
[50] |
HU H D, LIAO K W, GENG J J, et al. Removal characteristics of dissolved organic nitrogen and its bioavailable portion in a postdenitrifying biofilter: Effect of the C/N ratio[J]. Environmental Science & Technology, 2018, 52(2): 757-764.
|
[51] |
CZERWIONKA K. Influence of dissolved organic nitrogen on surface waters[J]. Oceanologia, 2016, 58(1): 39-45. doi: 10.1016/j.oceano.2015.08.002
|
[52] |
JIA L P, JIANG B H, HUANG F, et al. Nitrogen removal mechanism and microbial community changes of bioaugmentation subsurface wastewater infiltration system[J]. Bioresource Technology, 2019, 294: 122140. doi: 10.1016/j.biortech.2019.122140
|
[53] |
HUANG S F, CHEN M, DIAO Y M, et al. Dissolved organic matter acting as a microbial photosensitizer drives photoelectrotrophic denitrification[J]. Environmental Science & Technology, 2022, 56(7): 4632-4641.
|
[54] |
WANG L Y, LIN Y, YE L, et al. Microbial roles in dissolved organic matter transformation in full-scale wastewater treatment processes revealed by reactomics and comparative genomics[J]. Environmental Science & Technology, 2021, 55(16): 11294-11307.
|
[55] |
WANG H S, CHEN N, FENG C P, et al. Research on efficient denitrification system based on banana peel waste in sequencing batch reactors: Performance, microbial behavior and dissolved organic matter evolution[J]. Chemosphere, 2020, 253: 126693. doi: 10.1016/j.chemosphere.2020.126693
|
[56] |
陈翠忠, 李俊峰, 刘生宝, 等. 间歇式活性污泥法(SBR)系统碳氮比对同步硝化反硝化微生物群落分布及脱氮效能的影响[J]. 环境化学, 2021, 40(11): 3598-3607. doi: 10.7524/j.issn.0254-6108.2020070804
CHEN C Z, LI J F, LIU S B, et al. Effect of C/N ratio on the microbial community of simultaneous nitrification and denitrification(SND) and the biological nitrogen removal in sequencing batch reactor(SBR)[J]. Environmental Chemistry, 2021, 40(11): 3598-3607 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020070804
|
[57] |
CHEN C, XU X J, XIE P, et al. Pyrosequencing reveals microbial community dynamics in integrated simultaneous desulfurization and denitrification process at different influent nitrate concentrations[J]. Chemosphere, 2017, 171: 294-301. doi: 10.1016/j.chemosphere.2016.11.159
|
[58] |
FENG L J, CHEN K, HAN D D, et al. Comparison of nitrogen removal and microbial properties in solid-phase denitrification systems for water purification with various pretreated lignocellulosic carriers[J]. Bioresource Technology, 2017, 224: 236-245. doi: 10.1016/j.biortech.2016.11.002
|
[59] |
王东尔, 卢先春, 庞洪涛, 等. 基于生物膜耦合AOA的城镇生活污水深度脱氮工艺中试研究[J]. 环境工程学报, 2022, 16(3): 837-845. doi: 10.12030/j.cjee.202111154
WANG D E, LU X C, PANG H T, et al. A pilot-scale study of hybrid system of biofilm and anoxic-oxic-anoxic process for enhanced nitrogen removal of municipal wastewater[J]. Chinese Journal of Environmental Engineering, 2022, 16(3): 837-845 (in Chinese). doi: 10.12030/j.cjee.202111154
|
[60] |
AL ALI A A, NADDEO V, HASAN S W, et al. Correlation between bacterial community structure and performance efficiency of a full-scale wastewater treatment plant[J]. Journal of Water Process Engineering, 2020, 37: 101472. doi: 10.1016/j.jwpe.2020.101472
|
[61] |
SI Z H, SONG X S, WANG Y H, et al. Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: Denitrification efficiency and bacterial community structure[J]. Bioresource Technology, 2018, 267: 416-425. doi: 10.1016/j.biortech.2018.07.029
|
[62] |
HU R T, ZHENG X L, ZHENG T Y, et al. Effects of carbon availability in a woody carbon source on its nitrate removal behavior in solid-phase denitrification[J]. Journal of Environmental Management, 2019, 246: 832-839.
|
[63] |
WANG H S, FENG C P, DENG Y. Effect of potassium on nitrate removal from groundwater in agricultural waste-based heterotrophic denitrification system[J]. Science of the Total Environment, 2020, 703: 134830. doi: 10.1016/j.scitotenv.2019.134830
|