[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. doi: 10.1038/238037a0
[2] VILD A, TEIXEIRA S, KÜHN K, et al. Orthogonal experimental design of titanium dioxide—Poly(methyl methacrylate) electrospun nanocomposite membranes for photocatalytic applications[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 3151-3158. doi: 10.1016/j.jece.2016.06.029
[3] 吴士杰. 二氧化钛/金属复合光催化剂在二氧化碳还原和固氮中的应用及催化机理研究[D]. 金华: 浙江师范大学, 2021. WU S J. Applications of titanium dioxide/metal composites in photocatalytic carbon dioxide reduction and nitrogen fixation and related mechanism studies[D]. Jinhua: Zhejiang Normal University, 2021 (in Chinese).
[4] CAGLAR A, AKTAS N, KIVRAK H. Photocatalytic glucose electrooxidation of titanium dioxide doped CdTe enhanced for a photocatalytic fuel cell[J]. Fuel, 2022, 330: 125653. doi: 10.1016/j.fuel.2022.125653
[5] 董德志. TiO2及ZnO-TiO2基地聚物光催化剂微球的制备及其对盐酸四环素降解性能的研究[D]. 南宁: 广西大学, 2022. DONG D Z. Preparation of TiO2 and ZnO-TiO2 based polymer photocatalyst microspheres and their degradation properties for tetracycline hydrochloride[D]. Nanning: Guangxi University, 2022 (in Chinese).
[6] ARAÚJO E S, DA COSTA B P, OLIVEIRA R A P, et al. TiO2/ZnO hierarchical heteronanostructures: Synthesis, characterization and application as photocatalysts[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 2820-2829. doi: 10.1016/j.jece.2016.05.021
[7] HUANG X J, ZENG X F, WANG J X, et al. Synthesis of monodispersed ZnO@SiO2 nanoparticles for anti-UV aging application in highly transparent polymer-based nanocomposites[J]. Journal of Materials Science, 2019, 54(11): 8581-8590. doi: 10.1007/s10853-019-03393-z
[8] 马良. 水热法制备二氧化钛和其氧化锌纳米复合材料及光催化性能研究[D]. 西安: 西北大学, 2016. MA L. Hydrothermal synthesis and photocatalytic performance of TiO2 nanoparticles and TiO2/ZnO nanocomposites[D]. Xi'an: Northwest University, 2016 (in Chinese).
[9] VIET T Q Q, KHOI V H, THI HUONG GIANG N, et al. Statistical screening and optimization of photocatalytic degradation of methylene blue by ZnO–TiO2/rGO nanocomposite[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 629: 127464. doi: 10.1016/j.colsurfa.2021.127464
[10] 蒋银花, 邱琳, 张文莉, 等. ZnO掺杂TiO2复合空心球的制备方法及其应用: CN101905153A[P]. 2010-12-08. JIANG Y H, QIU L, ZHANG W L, et al. Preparation method and application of ZnO-doped TiO2 composite hollow sphere: CN101905153A[P]. 2010-12-08(in Chinese).
[11] SHAO D L, SUN H T, XIN G Q, et al. High quality ZnO-TiO2 core-shell nanowires for efficient ultraviolet sensing[J]. Applied Surface Science, 2014, 314: 872-876. doi: 10.1016/j.apsusc.2014.06.182
[12] WILLIAM C, MATTHEW P, JUSTIN C, et al. Tunable atmospheric microplasma synthesis of nitrogen-doped zinc oxide and titanium dioxide nanostructures[J]. Nano-Structures & Nano-Objects, 2022, 30: 100866.
[13] 杭子清. 简析光催化技术及其研究现状[J]. 资源节约与环保, 2021(2): 122-123. doi: 10.3969/j.issn.1673-2251.2021.02.064 HANG Z Q. Brief analysis of photocatalytic technology and its research status[J]. Resources Economization & Environmental Protection, 2021(2): 122-123 (in Chinese). doi: 10.3969/j.issn.1673-2251.2021.02.064
[14] 王颖, 杨传玺, 王小宁, 等. 二维光催化材料研究进展[J]. 有色金属科学与工程, 2021, 12(2): 30-42. doi: 10.13264/j.cnki.ysjskx.2021.02.005 WANG Y, YANG C X, WANG X N, et al. Research advances on two-dimensional materials using as photocatalysts[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 30-42 (in Chinese). doi: 10.13264/j.cnki.ysjskx.2021.02.005
[15] MAHY J G, DESCHAMPS F, COLLARD V, et al. Acid acting as redispersing agent to form stable colloids from photoactive crystalline aqueous Sol–gel TiO2 powder[J]. Journal of Sol-Gel Science and Technology, 2018, 87(3): 568-583. doi: 10.1007/s10971-018-4751-6
[16] KUMAR J S, BOLIMERA U R, THANGADURAI P. Direct sunlight responsive ZnO photocatalyst: Highly efficient photodegradation of methylene blue[C]//DAE SOLID STATE PHYSICS SYMPOSIUM 2018, 2019.
[17] ZANGENEH H, ZINATIZADEH A A, ZINADINI S, et al. Visible light-driven photoactive L-Methionine (CNS tripledoped)-TiO2/ZnO nanocomposite aiming for highly efficient photodegradation of xenobiotic compounds in wastewater[J]. Materials Research Bulletin, 2022, 150: 111783. doi: 10.1016/j.materresbull.2022.111783
[18] 崔舒. 氧化锌和二氧化钛材料的制备及其光催化、气敏性能研究[D]. 长春: 吉林大学, 2019. CUI S. Fabrication, photocatalytic and gas sensing properties of ZnO and TiO2 materials[D]. Changchun: Jilin University, 2019 (in Chinese).
[19] 崔义慧. 硒化镉敏化二氧化钛及氧化锌纳米光催化材料的制备及性能研究[D]. 沈阳: 沈阳师范大学, 2016. CUI Y H. Study on the preparation and properties of TiO2 and ZnO photocatalytic materials sensitized by CdSe[D]. Shenyang: Shenyang Normal University, 2016 (in Chinese).
[20] JOHRA F T, JUNG W G. RGO–TiO2–ZnO composites: Synthesis, characterization, and application to photocatalysis[J]. Applied Catalysis A:General, 2015, 491: 52-57. doi: 10.1016/j.apcata.2014.11.036
[21] HOU X B, STANLEY S L, ZHAO M, et al. MOF-based C-doped coupled TiO2/ZnO nanofibrous membrane with crossed network connection for enhanced photocatalytic activity[J]. Journal of Alloys and Compounds, 2019, 777: 982-990. doi: 10.1016/j.jallcom.2018.10.174
[22] EL-SHAZLY A N, RASHAD M M, ABDEL-AAL E A, et al. Nanostructured ZnO photocatalysts prepared via surfactant assisted Co-Precipitation method achieving enhanced photocatalytic activity for the degradation of methylene blue dyes[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 3177-3184. doi: 10.1016/j.jece.2016.06.018
[23] XU G, ZHANG Y, PENG D D, et al. Nitrogen-doped mixed-phase TiO2 with controllable phase junction as superior visible-light photocatalyst for selective oxidation of cyclohexane[J]. Applied Surface Science, 2021, 536: 147953. doi: 10.1016/j.apsusc.2020.147953
[24] 李江鸿, 梁发文, 陈必儒, 等. 非金属掺杂石墨氮化碳复合材料光催化协同活化过一硫酸盐降解有机污染物的研究进展[J]. 环境化学, 2022, 41(10): 3457-3468. doi: 10.7524/j.issn.0254-6108.2022050101 LI J H, LIANG F W, CHEN B R, et al. Research progress of nonmetallic doped graphite carbon nitride composites in photocatalytic activation of peroxymonosulfate system for organic pollutants removal[J]. Environmental Chemistry, 2022, 41(10): 3457-3468 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022050101
[25] WANI S I, GANIE A S. Ag2O incorporated ZnO−TiO2 nanocomposite: Ionic conductivity and photocatalytic degradation of an organic dye[J]. Inorganic Chemistry Communications, 2021, 128: 108567. doi: 10.1016/j.inoche.2021.108567
[26] BAO H V, DAT N M, GIANG N T H, et al. Behavior of ZnO-doped TiO2/rGO nanocomposite for water treatment enhancement[J]. Surfaces and Interfaces, 2021, 23: 100950. doi: 10.1016/j.surfin.2021.100950
[27] 张冬梅. 可回收TiO2及ZnO纳米复合光催化剂的制备及其光催化降解性能的研究[D]. 大连: 大连理工大学, 2021. ZHANG D M. Synthesis and photocatalytic degradation performance of recyclable TiO2 and ZnO nanocomposite photocatalysts[D]. Dalian: Dalian University of Technology, 2021 (in Chinese).
[28] RAJABI H R, ARJMAND H, KAZEMDEHDASHTI H, et al. A comparison investigation on photocatalytic activity performance and adsorption efficiency for the removal of cationic dye: Quantum dots vs. magnetic nanoparticles[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 2830-2840. doi: 10.1016/j.jece.2016.05.029
[29] 毕祥. 二氧化钛基和氧化锌基半导体光催化剂的制备与性能研究[D]. 西安: 陕西科技大学, 2021. BI X. Study on preparation and performance of titanium dioxide-based and zinc oxide-based semiconductor photocatalysts[D]. Xi'an: Shaanxi University of Science & Technology, 2021 (in Chinese).
[30] 刘庆祎, 肖桐, 孙文杰, 等. 纳米二氧化钛强化的相变储能研究进展[J]. 化工学报, 2022, 73(5): 1863-1882. LIU Q W, XIAO T, SUN W J, et al. Progress in the research of phase change energy storage enhanced by titanium dioxide nanoparticles[J]. CIESC Journal, 2022, 73(5): 1863-1882 (in Chinese).
[31] 彭伟校, 王开军, 胡劲, 等. 纯/掺杂纳米氧化锆粉体水热法制备研究进展[J]. 材料导报, 2013, 27(19): 146-149. PENG W X, WANG K J, HU J, et al. Research progress on preparation of pure/doped nano-zirconia powders by hydrothermal[J]. Materials Review, 2013, 27(19): 146-149 (in Chinese).
[32] 杜炜, 艾超前, 马雪东, 等. 无机晶须的制备及应用进展[J]. 应用化工, 2019, 48(5): 1163-1166,1171. doi: 10.3969/j.issn.1671-3206.2019.05.040 DU W, AI C Q, MA X D, et al. Progress in the application and preparation of inorganic whiskers[J]. Applied Chemical Industry, 2019, 48(5): 1163-1166,1171 (in Chinese). doi: 10.3969/j.issn.1671-3206.2019.05.040
[33] BAO Y, ZHANG Y H, MA J Z, et al. Progress in preparation and application of one-dimensional nano zinc oxide[J]. Cailiao Gongcheng/Journal of Materials Engineering, 2015, 43(2): 103-112.
[34] 邸琬茗. ZnO的均匀沉淀法制备及其在费托反应中的应用[D]. 杭州: 浙江工业大学, 2015. DI W M. The preparation of ZnO by homogeneous precipitation method and its applications in Fischer-Tropsch synthesis[D]. Hangzhou: Zhejiang University of Technology, 2015 (in Chinese).
[35] 廖培义, 陈延明, 王立岩, 等. 醇-水体系无表面活性剂纳米Zn O的制备及表征[J]. 材料导报, 2021, 35(S1): 108-111. LIAO P Y, CHEN Y M, WANG L Y. Synthesis and characterization of ZnO nanocrystals in alcohol-water without surfactants[J]. Materials Reports, 2021, 35(S1): 108-111 (in Chinese).
[36] QUINTERO Y, MOSQUERA E, DIOSA J, et al. Ultrasonic-assisted Sol–gel synthesis of TiO2 nanostructures: Influence of synthesis parameters on morphology, crystallinity, and photocatalytic performance[J]. Journal of Sol-Gel Science and Technology, 2020, 94(2): 477-485. doi: 10.1007/s10971-020-05263-6
[37] SIWIŃSKA-STEFAŃSKA K, KUBIAKA A, PIASECKI A, et al. TiO2-ZnO binary oxide systems: Comprehensive characterization and tests of photocatalytic activity[J]. Materials (Basel, Switzerland), 2018, 11(5): 841. doi: 10.3390/ma11050841
[38] UPADHYAY G K, RAJPUT J K, PATHAK T K, et al. Synthesis of ZnO: TiO2 nanocomposites for photocatalyst application in visible light[J]. Vacuum, 2019, 160: 154-163. doi: 10.1016/j.vacuum.2018.11.026
[39] IDRIS N J, ABU BAKAR S, MOHAMED A, et al. Photocatalytic performance improvement by utilizing GO_MWCNTs hybrid solution on sand/ZnO/TiO2-based photocatalysts to degrade methylene blue dye[J]. Environmental Science and Pollution Research, 2021, 28(6): 6966-6979. doi: 10.1007/s11356-020-10904-y
[40] DUBEY R S. Temperature-dependent phase transformation of TiO2 nanoparticles synthesized by Sol-gel method[J]. Materials Letters, 2018, 215: 312-317. doi: 10.1016/j.matlet.2017.12.120
[41] TEKIN D, KIZILTAS H, UNGAN H. Kinetic evaluation of ZnO/ TiO2 thin film photocatalyst in photocatalytic degradation of Orange G[J]. Journal of Molecular Liquids, 2020, 306: 112905. doi: 10.1016/j.molliq.2020.112905
[42] RAHMANI F, ARDYANIAN M. Fabrication and characterization of ZnO/TiO2 multilayers, deposited via spin coating method[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(5): 4285-4293. doi: 10.1007/s10854-017-8375-3
[43] AL-HAZMI F E, YAKUPHANOGLU F. Photoconducting and photovoltaic properties of ZnO: TiO2 composite/p-silicon heterojunction photodiode[J]. Silicon, 2018, 10(3): 781-787. doi: 10.1007/s12633-016-9530-9
[44] KUBIAK A, SIWIŃSKA-CIESIELCZYK K, JESIONOWSKI T. Titania-based hybrid materials with ZnO, ZrO2 and MoS2: A review[J]. Materials, 2018, 11(11): 2295. doi: 10.3390/ma11112295
[45] CHENG P F, WANG Y L, XU L P, et al. High specific surface area urchin-like hierarchical ZnO-TiO2 architectures: Hydrothermal synthesis and photocatalytic properties[J]. Materials Letters, 2016, 175: 52-55. doi: 10.1016/j.matlet.2016.03.120
[46] ZHOU Y, TAN Y W, XIANG Y, et al. Construction of urchin-like ZnO/TiO2 direct Z-scheme system to improve charge separation[J]. ChemistrySelect, 2019, 4(44): 12963-12970. doi: 10.1002/slct.201903905
[47] XUAN M C T, TRAN T N, BOTTO C, et al. Zinc-containing precursor dependence of hydrothermal method for the synthesis of N-doped ZnO photocatalysts[J]. Chemical Engineering Communications, 2021, 208(2): 149-158. doi: 10.1080/00986445.2019.1694917
[48] ZHU L, LI Y Q, ZENG W. Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties[J]. Applied Surface Science, 2018, 427: 281-287. doi: 10.1016/j.apsusc.2017.08.229
[49] RAJENDRAN K, GAJENDIRAN M, KIM S, et al. Synthesis and characterization of biocompatible zinc oxide nanorod doped-titanium dioxide nanosheet[J]. Journal of Industrial and Engineering Chemistry, 2018, 57: 387-395. doi: 10.1016/j.jiec.2017.08.047
[50] SUTAR R S, BARKUL R P, PATIL M K. Sunlight assisted photocatalytic degradation of different organic pollutants and simultaneous degradation of cationic and anionic dyes using titanium and zinc based nanocomposites[J]. Journal of Molecular Liquids, 2021, 340: 117191. doi: 10.1016/j.molliq.2021.117191
[51] ZHA R H, NADIMICHERLA R, GUO X. Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions[J]. Journal of Materials Chemistry A, 2015, 3(12): 6565-6574. doi: 10.1039/C5TA00764J
[52] HUO S P, DING S W, ZHAO C Y, et al. Growth and photocatalytic activities of porous ZnO/TiO2 composite microspheres with crystalline–amorphous phase boundary[J]. Catalysis Letters, 2021, 151(7): 1937-1947. doi: 10.1007/s10562-020-03463-x
[53] ZHANG X, CHEN G H, LI W H, et al. Preparation and photocathodic protection properties of ZnO/TiO2 heterojunction film under simulated solar light[J]. Materials (Basel, Switzerland), 2019, 12(23): 3856. doi: 10.3390/ma12233856
[54] 李化全, 邱贵宝, 吕学伟. 脱硝催化剂载体二氧化钛制备研究进展[J]. 钢铁钒钛, 2022, 43(2): 7-14,20. doi: 10.7513/j.issn.1004-7638.2022.02.002 LI H Q, QIU G B, LV X W. Research progress in preparation of titanium dioxide catalyst carrier for denitrification[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 7-14,20 (in Chinese). doi: 10.7513/j.issn.1004-7638.2022.02.002
[55] 李红霖. 氧化锌及其复合半导体材料的制备、表征与性能研究[D]. 西安: 陕西科技大学, 2014. LI H L. Synthesis, characterization and properties research of zinc oxide and its composite[D]. Xi'an: Shaanxi University of Science & Technology, 2014 (in Chinese).
[56] 卫世腾. 络合沉淀制备CeO2及其光屏蔽性能研究[D]. 沈阳: 东北大学, 2020. WEI S T. Preparation of CeO2 by complex precipitation and its light-shieding performance[D]. Shenyang: Northeastern University, 2020 (in Chinese).
[57] NIBRET A, YADAV O P, DÍAZ I, et al. Cr-N co-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity for degradation of thymol blue[J]. Bulletin of the Chemical Society of Ethiopia, 2015, 29: 247-258. doi: 10.4314/bcse.v29i2.8
[58] MORLANDO A, CARDILLO D, DEVERS T, et al. Titanium doped tin dioxide as potential UV filter with low photocatalytic activity for sunscreen products[J]. Materials Letters, 2016, 171: 289-292. doi: 10.1016/j.matlet.2016.02.094
[59] LACHOM V, POOLCHARUANSIN P, LAOKUL P. Preparation, characterizations and photocatalytic activity of a ZnO/TiO2nanocomposite[J]. Materials Research Express, 2017, 4(3): 035006. doi: 10.1088/2053-1591/aa60d1
[60] HAGHIGHATZADEH A, HOSSEINI M, MAZINANI B, et al. Improved photocatalytic activity of ZnO-TiO2 nanocomposite catalysts by modulating TiO2 thickness[J]. Materials Research Express, 2019, 6(11): 115060. doi: 10.1088/2053-1591/ab49c4
[61] BROOMS T J, OTIENO B, ONYANGO M S, et al. Photocatalytic degradation of P-Cresol using TiO2/ZnO hybrid surface capped with polyaniline[J]. Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances & Environmental Engineering, 2018, 53(2): 99-107.
[62] ARABNEZHAD M, AFARANI M S, JAFARI A. Co-precipitation synthesis of ZnO–TiO2 nanostructure composites for arsenic photodegradation from industrial wastewater[J]. International Journal of Environmental Science and Technology, 2019, 16(1): 463-468. doi: 10.1007/s13762-017-1585-7
[63] 朱雪松. 尖晶石型锌铁氧体的水热法制备及其磁性能研究[D]. 马鞍山: 安徽工业大学, 2021. ZHU X S. Preparation and magnetic properties of spinel zinc ferrite obtained by A hydrothermal method[D]. Maanshan: Anhui University of Technology, 2021 (in Chinese).
[64] RILDA Y, DAMARA D, Syukri, et al. Synthesis of ZnO-TiO2/chitosan nanorods by using precipitation methods and studying their structures and optics properties at different precursor molar compositions[J]. IOP Conference Series:Earth and Environmental Science, 2019, 217(1): 12015.
[65] KUMARI P, BAHADUR N, CONLAN X A, et al. Stimuli-responsive heterojunctions based photo-electrocatalytic membrane reactors for reactive filtration of persistent organic pollutants[J]. Chemical Engineering Journal, 2023, 452: 139374. doi: 10.1016/j.cej.2022.139374
[66] ZHOU Y, YANG L Y, LU J, et al. Photoelectric properties of three-dimensional urchin-like zinc oxide/titanium dioxide composite micronanostructures[J]. Micro & Nano Letters, 2016, 11(5): 277-280.
[67] KHAN M I, IMRAN S, SHAHNAWAZ, et al. Annealing effect on the structural, morphological and electrical properties of TiO2/ZnO bilayer thin films[J]. Results in Physics, 2018, 8: 249-252. doi: 10.1016/j.rinp.2017.12.030
[68] BUTALID ROGEL JAN B, CRISTOBAL ANNA PATRICIA S, MONTALLANA ARANTXA DANIELLE S, et al. Stability of TiO2-coated ZnO photocatalytic thin films for photodegradation of methylene blue[J]. Journal of Vacuum Science & Technology B, 2020, 38(6): 062205.
[69] 张瑞英. 基于席夫碱和氯己定的共价有机聚合物的合成及性质研究[D]. 沈阳: 辽宁大学, 2021. ZHANG R Y. Synthesis and properties of covalent organic polymer based on schiff base and chlorhexidine[D]. Shenyang: Liaoning University, 2021 (in Chinese).
[70] ULLAH N, ERTEN-ELA Ş, MUJTABA SHAH S, et al. Selected organic dyes (carminic acid, pyrocatechol violet and dithizone) sensitized metal (silver, neodymium) doped TiO2/ZnO nanostructured materials: A photoanode for hybrid bulk heterojunction solar cells[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2022, 278: 121387. doi: 10.1016/j.saa.2022.121387
[71] MOFOKENG S J, KUMAR V, KROON R E, et al. Structure and optical properties of Dy3+ activated Sol-gel ZnO-TiO2 nanocomposites[J]. Journal of Alloys and Compounds, 2017, 711: 121-131. doi: 10.1016/j.jallcom.2017.03.345
[72] ZHAN J H, CHEN H Y, ZHOU H J, et al. Mt-supported ZnO/TiO2 nanocomposite for agricultural antibacterial agent involving enhanced antibacterial activity and increased wettability[J]. Applied Clay Science, 2021, 214: 106296. doi: 10.1016/j.clay.2021.106296
[73] SHATHY R A, FAHIM S A, SARKER M, et al. Natural sunlight driven photocatalytic removal of toxic textile dyes in water using B-doped ZnO/TiO2 nanocomposites[J]. Catalysts, 2022, 12(3): 308.
[74] 胡敏, 郭嘉, 吴华东, 等. N-Zn/ TiO2光催化氧化脱硫废液中亚硫酸钠的研究[J]. 无机盐工业, 2020, 52(10): 151-156. HU M, GUO J, WU H D, et al. Photocatalytic oxidation of sodium sulfite in desulfurization wastewater by N-Zn/TiO2[J]. Inorganic Chemicals Industry, 2020, 52(10): 151-156 (in Chinese).
[75] WANG Y M, LIU X X, GUO L, et al. Metal organic framework-derived C-doped ZnO/TiO2 nanocomposite catalysts for enhanced photodegradation of Rhodamine B[J]. Journal of Colloid and Interface Science, 2021, 599: 566-576. doi: 10.1016/j.jcis.2021.03.167
[76] ZHANG L Y, YANG J J, YOU Y H. Construction and photocatalytic performance of fluorinated ZnO-TiO2 heterostructure composites[J]. RSC Advances, 2021, 11(61): 38654-38666. doi: 10.1039/D1RA07757K
[77] KHAKI M R D, SHAFEEYAN M S, RAMAN A A A, et al. Enhanced UV–visible photocatalytic activity of Cu-doped ZnO/TiO2 nanoparticles[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(7): 5480-5495. doi: 10.1007/s10854-017-8515-9
[78] CHEN W J, HSU K C, FANG T H, et al. Characteristics and heterostructure of metal-doped TiO2/ZnO nanocatalysts[J]. Current Applied Physics, 2022, 38: 1-6. doi: 10.1016/j.cap.2022.03.001
[79] 陈昕海. Nd-Er/ZnO-TiO2光催化材料制备及水体有机酚类化合物光催化降解研究[D]. 重庆: 重庆三峡学院, 2018. CHEN X H. Preparation and characterization of Nd-Er/ZnO-TiO2 photocatalytic materials study on photocatalytic degradation of organic phenols compounds in surface water[D]. Chongqing: Chongqing Three Gorges University, 2018 (in Chinese).
[80] PANWAR S, UPADHYAY G K, PUROHIT L P. Gd-doped ZnO: TiO2 heterogenous nanocomposites for advance oxidation process[J]. Materials Research Bulletin, 2021, 145: 111534.
[81] LIANG Y, LI W, WANG X, et al. TiO2-ZnO/Au ternary heterojunction nanocomposite: Excellent antibacterial property and visible-light photocatalytic hydrogen production efficiency[J]. Ceramics International, 2022, 48(2): 2826-2832. doi: 10.1016/j.ceramint.2021.10.072
[82] XIANG X B, YU Y, WEN W, et al. Construction of hierarchical Ag@TiO2@ZnO nanowires with high photocatalytic activity[J]. New Journal of Chemistry, 2018, 42(1): 265-271. doi: 10.1039/C7NJ02302B
[83] 李汉明. CsPbI3量子点表面调控构筑高效稳定发光二极管研究[D]. 长春: 吉林大学, 2022. LI H M. Research on efficient and stable light-emitting diodes constructed by surface control of CsPbI3 quantum dot[D]. Changchun: Jilin University, 2022 (in Chinese).
[84] 都晗. 基于碳量子点和DNA四面体信号放大的两种食源性致病菌夹心生物传感器机理研究[D]. 泰安: 山东农业大学, 2022. DU H. Mechanism research of sandwich biosensor for two foodborne pathogens based on carbon quantum dots and DNA tetrahedron signal amplification[D]. Taian: Shandong Agricultural University, 2022 (in Chinese).
[85] BAJOROWICZ B, KOBYLAŃSKI M P, GOŁĄBIEWSKA A, et al. Quantum dot-decorated semiconductor micro- and nanoparticles: A review of their synthesis, characterization and application in photocatalysis[J]. Advances in Colloid and Interface Science, 2018, 256: 352-372. doi: 10.1016/j.cis.2018.02.003
[86] LIU J C, ZHU W Y, YU S Y, et al. Three dimensional carbogenic dots/TiO2 nanoheterojunctions with enhanced visible light-driven photocatalytic activity[J]. Carbon, 2014, 79: 369-379. doi: 10.1016/j.carbon.2014.07.079
[87] ZHU M, DENG X C, LIN X, et al. The carbon quantum dots modified ZnO/TiO2 nanotube heterojunction and its visible light photocatalysis enhancement[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(13): 11449-11456. doi: 10.1007/s10854-018-9237-3
[88] LEE J H, AHN H J, YOUN J, et al. Synthesis and characterization of ZnO/TiO2 photocatalyst decorated with PbS QDs for the degradation of aniline blue solution[J]. Korean Journal of Metals and Materials, 2018, 56(12): 900-909. doi: 10.3365/KJMM.2018.56.12.900
[89] 朱世从. 两种氧化物/石墨烯量子点/介孔二氧化钛光催化剂的制备及其在光催化苯乙烯环氧化反应中的应用[D]. 淮北: 淮北师范大学, 2021. ZHU S C. Preparation of two kinds of oxide/graphene quantum dots/mesoporous titanium dioxide photocatalysts and their application in photocatalytic epoxidation of styrene[D]. Huaibei: Huaibei Normal University, 2021 (in Chinese).
[90] AN M Z, LI L, WU Q Q, et al. CdS QDs modified three-dimensional ordered hollow spherical ZnTiO3-ZnO-TiO2 composite with improved photocatalytic performance[J]. Journal of Alloys and Compounds, 2022, 895: 162638. doi: 10.1016/j.jallcom.2021.162638
[91] BAI S L, CHU H M, XIANG X, et al. Fabricating of Fe2O3/BiVO4 heterojunction based photoanode modified with NiFe-LDH nanosheets for efficient solar water splitting[J]. Chemical Engineering Journal, 2018, 350: 148-156. doi: 10.1016/j.cej.2018.05.109
[92] FATIMAH I, FADILLAH G, YANTI I, et al. Clay-supported metal oxide nanoparticles in catalytic advanced oxidation processes: A review[J]. Nanomaterials (Basel, Switzerland), 2022, 12(5): 825. doi: 10.3390/nano12050825
[93] LI J T, WU N Q. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review[J]. Catalysis Science & Technology, 2015, 5(3): 1360-1384.
[94] ZHANG H Y, YU H, DAI J D, et al. Microstructure, photoluminescence and photocatalytic activity of ZnO-MoS2-TiO2 composite[J]. Chinese Journal of Physics, 2018, 56(6): 3053-3061. doi: 10.1016/j.cjph.2018.10.015
[95] LIU D D, LIANG H O, XU T, et al. Construction of ternary hollow TiO2-ZnS@ZnO heterostructure with enhanced visible-light photoactivity[J]. Journal of Molecular Structure, 2022, 1248: 131493. doi: 10.1016/j.molstruc.2021.131493
[96] ISAC L, ANDRONIC L, VISA M, et al. Selective photocatalytic degradation of organic pollutants by Cu xS/ZnO/TiO2 heterostructures[J]. Ceramics International, 2020, 46(4): 4265-4273. doi: 10.1016/j.ceramint.2019.10.147
[97] PRASAD C, YANG X F, LIU Q Q, et al. Recent advances in MXenes supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications[J]. Journal of Industrial and Engineering Chemistry, 2020, 85: 1-33. doi: 10.1016/j.jiec.2019.12.003
[98] KUANG P Y, LOW J X, CHENG B, et al. MXene-based photocatalysts[J]. Journal of Materials Science & Technology, 2020, 56: 18-44.
[99] ZHAN X X, SI C, ZHOU J, et al. MXene and MXene-based composites: Synthesis, properties and environment-related applications[J]. Nanoscale Horizons, 2020, 5(2): 235-258. doi: 10.1039/C9NH00571D
[100] ABBAS K K, ABDULKADHIMAL-GHABAN A M H, RDEWI E H. Synthesis of a novel ZnO/TiO2-nanorod MXene heterostructured nanophotocatalyst for the removal pharmaceutical ceftriaxone sodium from aqueous solution under simulated sunlight[J]. Journal of Environmental Chemical Engineering, 2022, 10(4): 108111. doi: 10.1016/j.jece.2022.108111
[101] RDEWI E H, ABBAS K K, ABDULKADHIMAL-GHABAN A M H. Removal pharmaceutical carbamazepine from wastewater using ZnO-TiO2-MXene heterostructural nanophotocatalyst under solar light irradiation[J]. Materials Today:Proceedings, 2022, 60(P3): 1702-1711.
[102] JOSEPH A, VIJAYANANDAN A. Review on support materials used for immobilization of nano-photocatalysts for water treatment applications[J]. Inorganica Chimica Acta, 2023, 545: 121284. doi: 10.1016/j.ica.2022.121284
[103] HAGHIGHAT N, VATANPOUR V, SHEYDAEI M, et al. Preparation of a novel polyvinyl chloride (PVC) ultrafiltration membrane modified with Ag/TiO2 nanoparticle with enhanced hydrophilicity and antibacterial activities[J]. Separation and Purification Technology, 2019, 237(24): 116374.
[104] ULLAH S, FERREIRA-NETO E P, KHAN A A, et al. Supported nanostructured photocatalysts: The role of support-photocatalyst interactions[J]. Photochemical & Photobiological Sciences, 2023, 22(1): 219-240.
[105] ENESCA A, CAZAN C. Polymer composite-based materials with photocatalytic applications in wastewater organic pollutant removal: A mini review[J]. Polymers, 2022, 14(16): 3291. doi: 10.3390/polym14163291
[106] YAR A, HASPULAT B, ÜSTÜN T, et al. Electrospun TiO2/ZnO/PAN hybrid nanofiber membranes with efficient photocatalytic activity[J]. RSC Advances, 2017, 7(47): 29806-29814. doi: 10.1039/C7RA03699J
[107] GARBA A A, MATMIN J, TOEMEN S. Highly Stable Photocatalytic Removal of Paraquat Dichloride using ZnO/TiO2 supported on PVC[J]. Malaysian Journal of Fundamental and Applied Sciences, 2021, 17(5): 647-658. doi: 10.11113/mjfas.v17n5.2424
[108] LI N, TIAN Y, ZHANG J, et al. Precisely-controlled modification of PVDF membranes with 3D TiO2/ZnO nanolayer: Enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation[J]. Journal of Membrane Science, 2017, 528: 359-368. doi: 10.1016/j.memsci.2017.01.048
[109] 赵瑨云, 徐婕, 穆寄林, 等. 磁性Fe3O4@TiO2/ZnO的制备及光催化性能研究[J]. 人工晶体学报, 2020, 49(7): 1223-1228. doi: 10.3969/j.issn.1000-985X.2020.07.012 ZHAO J Y, XU J, MU J L, et al. Preparation and photocatalytic property of magnetic Fe3O4@TiO2/ZnO[J]. Journal of Synthetic Crystals, 2020, 49(7): 1223-1228 (in Chinese). doi: 10.3969/j.issn.1000-985X.2020.07.012
[110] 白宁娜. ZnO光催化材料的改性及TiO2/ZnO@PC光催化剂的制备及性能[D]. 西安: 西安科技大学, 2021. BAI N N. Modification of ZnO photocatalytic materials and preparation and properties of TiO2/ZnO@PC photocatalyst[D]. Xi'an: Xi'an University of Science and Technology, 2021 (in Chinese).
[111] PANT B, OJHA G P, KUK Y S, et al. Synthesis and characterization of ZnO-TiO2/carbon fiber composite with enhanced photocatalytic properties[J]. Nanomaterials (Basel, Switzerland), 2020, 10(10): 1960. doi: 10.3390/nano10101960
[112] HUANG Y Z, LI R K, CHEN D P, et al. Synthesis and characterization of CNT/TiO2/ZnO composites with high photocatalytic performance[J]. Catalysts, 2018, 8(4): 151. doi: 10.3390/catal8040151
[113] RANGKOOY H A, JAHANI F, SIAHI AHANGAR A. Photocatalytic removal of xylene as a pollutant in the air using ZnO-activated carbon, TiO2-activated carbon, and TiO2/ZnOactivated carbon nanocomposites[J]. Environmental Health Engineering and Management, 2020, 7(1): 41-47. doi: 10.34172/EHEM.2020.06
[114] SAGHARLOO N G, RABANI M, SALIMI L, et al. Immobilized ZnO/TiO2 activated carbon (I ZnO/TiO2 AC) to removal of arsenic from aqueous environments: Optimization using response surface methodology and kinetic studies[J]. Biomass Conversion and Biorefinery, 2021,13(12):10483–10494.
[115] OTIENO B O, APOLLO S O, NAIDOO B E, et al. Photodecolorisation of melanoidins in vinasse with illuminated TiO2-ZnO/activated carbon composite[J]. Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(7): 616-623.
[116] RAGHAVAN N, THANGAVEL S, VENUGOPAL G. Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites[J]. Materials Science in Semiconductor Processing, 2015, 30: 321-329. doi: 10.1016/j.mssp.2014.09.019
[117] PAN X Y, YANG P, NAN H, et al. Preparation and enhanced visible-light photoelectrocatalytic activity of ternary TiO2ZnO/RGO nanocomposites[J]. Electrochimica Acta, 2018, 261: 284-288. doi: 10.1016/j.electacta.2017.12.143
[118] VAIZOĞULLAR A İ. TiO2/ZnO supported on sepiolite: Preparation, structural characterization, and photocatalytic degradation of flumequine antibiotic in aqueous solution[J]. Chemical Engineering Communications, 2017, 204(6): 689-697. doi: 10.1080/00986445.2017.1306518
[119] YEASMIN Z, ALIM A, AHMED S, et al. Synthesis, characterization and efficiency of HAp-TiO2-ZnO composite as a promising photocatalytic material[J]. Transactions of the Indian Ceramic Society, 2018, 77(3): 161-168. doi: 10.1080/0371750X.2018.1512380
[120] ASADZADEH PATEHKHOR H, FATTAHI M, KHOSRAVI-NIKOU M. Synthesis and characterization of ternary chitosan-TiO2-ZnO over graphene for photocatalytic degradation of tetracycline from pharmaceutical wastewater[J]. Scientific Reports, 2021, 11(1): 24177. doi: 10.1038/s41598-021-03492-5
[121] YANG B B, MA Z X, WANG Q, et al. Synthesis and photoelectrocatalytic applications of TiO2/ZnO/diatomite composites[J]. Catalysts, 2022, 12(3): 268. doi: 10.3390/catal12030268