[1] |
RAPANT S, DIETZOVÁ Z, CICMANOVÁ S. Environmental and health risk assessment in abandoned mining area, Zlata Idka, Slovakia[J]. Environmental Geology, 2006, 51(3): 387-397. doi: 10.1007/s00254-006-0334-x
|
[2] |
TAPIA J, MURRAY J, ORMACHEA M, et al. Origin, distribution, and geochemistry of arsenic in the Altiplano-Puna plateau of Argentina, Bolivia, Chile, and Perú[J]. Science of the Total Environment, 2019, 678: 309-325. doi: 10.1016/j.scitotenv.2019.04.084
|
[3] |
JIA X Y, CAO Y N, O’CONNOR D, et al. Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field[J]. Environmental Pollution, 2021, 270: 116281. doi: 10.1016/j.envpol.2020.116281
|
[4] |
SU Y H, McGRATH S P, ZHAO F J. Rice is more efficient in arsenite uptake and translocation than wheat and barley[J]. Plant and Soil, 2010, 328(1): 27-34.
|
[5] |
OREMLAND R S, STOLZ J F. Arsenic, microbes and contaminated aquifers[J]. Trends in Microbiology, 2005, 13(2): 45-49. doi: 10.1016/j.tim.2004.12.002
|
[6] |
MÜLLER K, CIMINELLI V S T, DANTAS M S S, et al. A comparative study of As(Ⅲ) and As(Ⅴ) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy[J]. Water Research, 2010, 44(19): 5660-5672. doi: 10.1016/j.watres.2010.05.053
|
[7] |
SILVER S, PHUNG L T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic[J]. Applied and Environmental Microbiology, 2005, 71(2): 599-608. doi: 10.1128/AEM.71.2.599-608.2005
|
[8] |
HUANG J H, VOEGELIN A, POMBO S A, et al. Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32[J]. Environmental Science & Technology, 2011, 45(18): 7701-7709.
|
[9] |
CAI X L, ZHANG Z N, YIN N Y, et al. Comparison of arsenate reduction and release by three As(Ⅴ)-reducing bacteria isolated from arsenic-contaminated soil of Inner Mongolia, China[J]. Chemosphere, 2016, 161: 200-207. doi: 10.1016/j.chemosphere.2016.06.102
|
[10] |
张璐. 土壤矿物对非腐殖质活性组分的吸附及稳定性的影响[D]. 昆明: 昆明理工大学, 2021.
ZHANG L. Adsorption of soil minerals on non-humus active components and its stability effects [D]. Kunming: Kunming University of Science and Technology, 2021 (in Chinese).
|
[11] |
李海防, 夏汉平, 熊燕梅, 等. 土壤温室气体产生与排放影响因素研究进展[J]. 生态环境, 2007(6): 1781-1788.
LI H F, XIA H P, XIONG Y M, et al. Mechanism of greenhouse gases fluxes from soil and its controlling factors: A review[J]. Ecology and Environment, 2007(6): 1781-1788 (in Chinese).
|
[12] |
BUSCHMANN J, KAPPELER A, LINDAUER U, et al. Arsenite and arsenate binding to dissolved humic acids: Influence of pH, type of humic acid, and aluminum[J]. Environmental Science & Technology, 2006, 40(19): 6015-6020.
|
[13] |
XU Y F, WANG K L, ZHOU Q H, et al. Effects of humus on the mobility of arsenic in tailing soil and the thiol-modification of humus[J]. Chemosphere, 2020, 259: 127403. doi: 10.1016/j.chemosphere.2020.127403
|
[14] |
LI J P, DING Y, WANG K L, et al. Comparison of humic and fulvic acid on remediation of arsenic contaminated soil by electrokinetic technology[J]. Chemosphere, 2020, 241: 125038. doi: 10.1016/j.chemosphere.2019.125038
|
[15] |
ZHANG P, YAO W Y, YUAN S H. Citrate-enhanced release of arsenic during pyrite oxidation at circumneutral conditions[J]. Water Research, 2017, 109: 245-252. doi: 10.1016/j.watres.2016.11.058
|
[16] |
LEE J C, KIM E J, KIM H W, et al. Oxalate-based remediation of arsenic bound to amorphous Fe and Al hydrous oxides in soil[J]. Geoderma, 2016, 270: 76-82. doi: 10.1016/j.geoderma.2015.09.015
|
[17] |
QIAO J T, LI X M, LI F B, et al. Humic substances facilitate arsenic reduction and release in flooded paddy soil[J]. Environmental Science & Technology, 2019, 53(9): 5034-5042.
|
[18] |
ZHU M, LV X F, FRANKS A E, et al. Maize straw biochar addition inhibited pentachlorophenol dechlorination by strengthening the predominant soil reduction processes in flooded soil[J]. Journal of Hazardous Materials, 2020, 386: 122002. doi: 10.1016/j.jhazmat.2019.122002
|
[19] |
查文文. 聚合氨基酸对北方水稻土中氧化铁转化与活性有机碳组分的影响[D]. 沈阳: 沈阳农业大学, 2017.
ZHA W W. Effects of amino acids on the transformation of iron oxides and active organic carbon fractions in paddy soils of North China [D]. Shenyang: Shenyang Agricultural University, 2017 (in Chinese).
|
[20] |
TAKAHASHI Y, MINAMIKAWA R, HATTORI K H, et al. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods[J]. Environmental Science & Technology, 2004, 38(4): 1038-1044.
|
[21] |
WARWICK P, INAM E, EVANS N. Arsenic’s interaction with humic acid[J]. Environmental Chemistry, 2005, 2(2): 119. doi: 10.1071/EN05025
|
[22] |
THANABALASINGAM P, PICKERING W F. Arsenic sorption by humic acids[J]. Environmental Pollution Series B, Chemical and Physical, 1986, 12(3): 233-246. doi: 10.1016/0143-148X(86)90012-1
|
[23] |
LI F L, GUO H M, ZHOU X Q, et al. Impact of natural organic matter on arsenic removal by modified granular natural siderite: Evidence of ternary complex formation by HPSEC-UV-ICP-MS[J]. Chemosphere, 2017, 168: 777-785. doi: 10.1016/j.chemosphere.2016.10.135
|
[24] |
SHAKOOR M B, NIAZI N K, BIBI I, et al. Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater[J]. Science of the Total Environment, 2018, 645: 1444-1455. doi: 10.1016/j.scitotenv.2018.07.218
|
[25] |
HAQUE M N, MORRISON G M, PERRUSQUÍA G, et al. Characteristics of arsenic adsorption to sorghum biomass[J]. Journal of Hazardous Materials, 2007, 145(1/2): 30-35.
|
[26] |
DEIANA S, DEIANA L, PREMOLI A, et al. Accumulation and mobilization of arsenate by Fe(Ⅲ) polyions trapped in a Ca-polygalacturonate network[J]. Plant Physiology and Biochemistry, 2009, 47(7): 615-622. doi: 10.1016/j.plaphy.2009.02.004
|
[27] |
TAM S C, McCOLL J G. Aluminum- and calcium-binding affinities of some organic ligands in acidic conditions[J]. Journal of Environmental Quality, 1990, 19(3): 514-520.
|
[28] |
BOLAN N S, NAIDU R, MAHIMAIRAJA S, et al. Influence of low-molecular-weight organic acids on the solubilization of phosphates[J]. Biology and Fertility of Soils, 1994, 18(4): 311-319. doi: 10.1007/BF00570634
|
[29] |
刘文涵, 单伟光, 高云芳, 等. 硫化锌法原子吸收间接测定谷氨酸络合反应的机理研究[J]. 光谱学与光谱分析, 2003, 23(6): 1191-1193.
LIU W H, SHAN W G, GAO Y F, et al. Studies of complexing action mechanism in the indirect determination of glutamic acid by FAAS with ZnS[J]. Spectroscopy and Spectral Analysis, 2003, 23(6): 1191-1193 (in Chinese).
|
[30] |
KO I, KIM J Y, KIM K W. Arsenic speciation and sorption kinetics in the As–hematite–humic acid system[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2004, 234(1/2/3): 43-50.
|
[31] |
PALMER N E, FREUDENTHAL J H, von WANDRUSZKA R. Reduction of arsenates by humic materials[J]. Environmental Chemistry, 2006, 3(2): 131. doi: 10.1071/EN05081
|
[32] |
KLÜPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2014, 48(10): 5601-5611.
|
[33] |
张月. 生物炭的氧化还原机制及其环境应用[D]. 上海: 上海交通大学, 2019.
ZHANG Y. Redox mechanism of biochar and its environmental application[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese).
|
[34] |
SCOTT D T, McKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environmental Science & Technology, 1998, 32(19): 2984-2989.
|
[35] |
CAI X L, THOMASARRIGO L K, FANG X, et al. Impact of organic matter on microbially-mediated reduction and mobilization of arsenic and iron in arsenic(Ⅴ)-bearing ferrihydrite[J]. Environmental Science & Technology, 2021, 55(2): 1319-1328.
|