[1] |
SHARMA V K, SOHN M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation[J]. Environment International, 2009, 35(4): 743-759. doi: 10.1016/j.envint.2009.01.005
|
[2] |
ZHAO F J, McGRATH S P, MEHARG A A. Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies[J]. Annual Review of Plant Biology, 2010, 61: 535-559. doi: 10.1146/annurev-arplant-042809-112152
|
[3] |
SMITH A H, LOPIPERO P A, BATES M N, et al. Public health. Arsenic epidemiology and drinking water standards[J]. Science, 2002, 296(5576): 2145-2146. doi: 10.1126/science.1072896
|
[4] |
ALI I, GUPTA V K. Advances in water treatment by adsorption technology[J]. Nature Protocols, 2006, 1(6): 2661-2667. doi: 10.1038/nprot.2006.370
|
[5] |
CUONG D V, WU P C, CHEN L I, et al. Active MnO2/biochar composite for efficient As(Ⅲ) removal: Insight into the mechanisms of redox transformation and adsorption[J]. Water Research, 2021, 188: 116495. doi: 10.1016/j.watres.2020.116495
|
[6] |
WEERASUNDARA L, OK Y S, BUNDSCHUH J. Selective removal of arsenic in water: A critical review[J]. Environmental Pollution, 2021, 268: 115668. doi: 10.1016/j.envpol.2020.115668
|
[7] |
HAO L L, LIU M Z, WANG N N, et al. A critical review on arsenic removal from water using iron-based adsorbents[J]. RSC Advances, 2018, 8(69): 39545-39560. doi: 10.1039/C8RA08512A
|
[8] |
LIU Z M, CHEN J T, WU Y C, et al. Synthesis of magnetic orderly mesoporous α-Fe2O3 nanocluster derived from MIL-100(Fe) for rapid and efficient arsenic(Ⅲ, V) removal[J]. Journal of Hazardous Materials, 2018, 343: 304-314. doi: 10.1016/j.jhazmat.2017.09.047
|
[9] |
CHEN D N, LI D G, XIAO Z J, et al. Removal of lead ions by two FeMn oxide substrate adsorbents[J]. Science of the Total Environment, 2021, 773: 145670. doi: 10.1016/j.scitotenv.2021.145670
|
[10] |
MA L, CAI D M, TU S X. Arsenite simultaneous sorption and oxidation by natural ferruginous Manganese ores with various ratios of Mn/Fe[J]. Chemical Engineering Journal, 2020, 382: 123040. doi: 10.1016/j.cej.2019.123040
|
[11] |
CHAKRAVARTY S, DUREJA V, BHATTACHARYYA G, et al. Removal of arsenic from groundwater using low cost ferruginous Manganese ore[J]. Water Research, 2002, 36(3): 625-632. doi: 10.1016/S0043-1354(01)00234-2
|
[12] |
DESCHAMPS E, CIMINELLI V S T, HÖLL W H. Removal of As(Ⅲ) and As(V) from water using a natural Fe and Mn enriched sample[J]. Water Research, 2005, 39(20): 5212-5220. doi: 10.1016/j.watres.2005.10.007
|
[13] |
LIU B B, ZHANG Y B, LU M M, et al. Extraction and separation of manganese and iron from ferruginous Manganese ores: A review[J]. Minerals Engineering, 2019, 131: 286-303. doi: 10.1016/j.mineng.2018.11.016
|
[14] |
WANG J L, GUO X. Adsorption isotherm models: Classification, physical meaning, application and solving method[J]. Chemosphere, 2020, 258: 127279. doi: 10.1016/j.chemosphere.2020.127279
|
[15] |
AL-GHOUTI M A, DA'ANA D A. Guidelines for the use and interpretation of adsorption isotherm models: A review[J]. Journal of Hazardous Materials, 2020, 393: 122383. doi: 10.1016/j.jhazmat.2020.122383
|
[16] |
HO Y S, McKAY G. Sorption of dye from aqueous solution by peat[J]. Chemical Engineering Journal, 1998, 70(2): 115-124. doi: 10.1016/S0923-0467(98)00076-1
|
[17] |
CAI G Y, TIAN Y, LI D K, et al. Self-enhanced and efficient removal of As(Ⅲ) from water using Fe-Cu-Mn composite oxide under visible-light irradiation: Synergistic oxidation and mechanisms[J]. Journal of Hazardous Materials, 2022, 422: 126908. doi: 10.1016/j.jhazmat.2021.126908
|
[18] |
ZHANG G S, LIU H J, LIU R P, et al. Adsorption behavior and mechanism of arsenate at Fe-Mn binary oxide/water interface[J]. Journal of Hazardous Materials, 2009, 168(2/3): 820-825.
|
[19] |
ZHENG Q, TU S X, HOU J T, et al. Insights into the underlying mechanisms of stability working for As(Ⅲ) removal by Fe-Mn binary oxide as a highly efficient adsorbent[J]. Water Research, 2021, 203: 117558. doi: 10.1016/j.watres.2021.117558
|
[20] |
HOU J T, LUO J L, SONG S X, et al. The remarkable effect of the coexisting arsenite and arsenate species ratios on arsenic removal by Manganese oxide[J]. Chemical Engineering Journal, 2017, 315: 159-166. doi: 10.1016/j.cej.2016.12.115
|
[21] |
HAHN A, VOGEL H, ANDÓ S, et al. Using Fourier transform infrared spectroscopy to determine mineral phases in sediments[J]. Sedimentary Geology, 2018, 375: 27-35. doi: 10.1016/j.sedgeo.2018.03.010
|
[22] |
BAI Y, TANG X J, SUN L Y, et al. Application of iron-based materials for removal of antimony and arsenic from water: Sorption properties and mechanism insights[J]. Chemical Engineering Journal, 2022, 431: 134143. doi: 10.1016/j.cej.2021.134143
|
[23] |
ZHANG G S, QU J H, LIU H J, et al. Removal mechanism of As(Ⅲ) by a novel Fe-Mn binary oxide adsorbent: Oxidation and sorption[J]. Environmental Science & Technology, 2007, 41(13): 4613-4619.
|
[24] |
RAWAT A P, KUMAR V, SINGH P, et al. Kinetic behavior and mechanism of arsenate adsorption by loam and sandy loam soil[J]. Soil and Sediment Contamination:an International Journal, 2022, 31(1): 15-39. doi: 10.1080/15320383.2021.1900071
|
[25] |
WANG J B, XU J, XIA J, et al. A kinetic study of concurrent arsenic adsorption and phosphorus release during sediment resuspension[J]. Chemical Geology, 2018, 495: 67-75. doi: 10.1016/j.chemgeo.2018.08.003
|
[26] |
APPELO C A J, van der WEIDEN M J J, TOURNASSAT C, et al. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic[J]. Environmental Science & Technology, 2002, 36(14): 3096-3103.
|