[1] 刘艺, 宋浩, 刘少俊, 等. 2种制备方法对Pt/Co-Ce催化氧化甲苯性能的影响[J]. 环境工程学报, 2022, 16(5): 1579-1588. LIU Y, SONG H, LIU S J, et al. Effects of two preparation methods on the performance of Pt/Co-Ce catalytic oxidation of toluene[J]. Chinese Journal of Environmental Engineering, 2022, 16(5): 1579-1588 (in Chinese).
[2] LI S J, LIN Y, WANG D, et al. Polyhedral cobalt oxide supported Pt nanoparticles with enhanced performance for toluene catalytic oxidation[J]. Chemosphere, 2021, 263: 127870. doi: 10.1016/j.chemosphere.2020.127870
[3] PENG R S, LI S J, SUN X B, et al. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts[J]. Applied Catalysis B:Environmental, 2018, 220: 462-470. doi: 10.1016/j.apcatb.2017.07.048
[4] MATSUO K, NUNOTANI N, IMANAKA N. Effect of oxide-ion conductivity of apatite-type Ln10Si6O27 on catalytic activity for toluene combustion[J]. Journal of Asian Ceramic Societies, 2021, 9(4): 1466-1472. doi: 10.1080/21870764.2021.1992850
[5] 黄海凤, 徐琴琪, 陈晓, 等. 整体式Mn基复合金属氧化物催化燃烧VOCs性能研究[J]. 环境化学, 2018, 37(7): 1583-1590. doi: 10.7524/j.issn.0254-6108.2017101307 HUANG H F, XU Q Q, CHEN X, et al. Catalytic combustion of VOCs by integral Mn-based mixed metal oxide[J]. Environmental Chemistry, 2018, 37(7): 1583-1590 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017101307
[6] MO S P, PENG P, PEI Y C, et al. Immobilizing ultrafine bimetallic PtAg alloy onto uniform MnO2 microsphere as a highly active catalyst for CO oxidation[J]. Chinese Chemical Letters, 2021, 32(6): 2057-2060. doi: 10.1016/j.cclet.2020.11.062
[7] ZHANG Y, WU C, WANG Z Q, et al. Enhanced low-temperature catalytic performance for toluene combustion of CeO2-supported Pt-Ir alloy catalysts[J]. Applied Surface Science, 2022, 580: 152278. doi: 10.1016/j.apsusc.2021.152278
[8] ZENG Y Q, WANG Y N, MENG Y H, et al. The effect of preparation method on oxygen activation over Pt/TiO2 catalysts for toluene total oxidation[J]. Chemical Physics Letters, 2019, 730: 95-99. doi: 10.1016/j.cplett.2019.05.048
[9] SUN X C, LIN J, WANG Y H, et al. Catalytically active Ir0 species supported on Al2O3 for complete oxidation of formaldehyde at ambient temperature[J]. Applied Catalysis B:Environmental, 2020, 268: 118741. doi: 10.1016/j.apcatb.2020.118741
[10] 胡涛, 黄琼, 孙月吟, 等. 柠檬酸配合法制备CuMnCeOx化剂及常温催化氧化性能研究[J]. 分子催化, 2022, 36(6): 547-560. HU T, HUANG Q, SUN Y Y, et al. Preparation of CuMnCeO x catalysts by complex method with citric acid and catalytic oxidation at ambient temperature[J]. Journal of Molecular Catalysis, 2022, 36(6): 547-560(in Chinese).
[11] WEN X Y, LI W C, YAN J X, et al. Strong metal–support interaction in Pd/CeO2 promotes the catalytic activity of ethyl acetate oxidation[J]. The Journal of Physical Chemistry C, 2022, 126(3): 1450-1461. doi: 10.1021/acs.jpcc.1c10421
[12] LI Y B, CHEN X Y, WANG C Y, et al. Sodium enhances Ir/TiO2 activity for catalytic oxidation of formaldehyde at ambient temperature[J]. ACS Catalysis, 2018, 8(12): 11377-11385. doi: 10.1021/acscatal.8b03026
[13] 席康, 王勇, 谢晶, 等. 不同Pt前体制备Pt/CeO2催化剂对其结构及性能的影响[J]. 化工学报, 2019, 70(11): 4278-4288. XI K, WANG Y, XIE J, et al. Effect of Pt precursor on structure and performance of Pt/CeO2 catalysts[J]. CIESC Journal, 2019, 70(11): 4278-4288 (in Chinese)
[14] ZHU X Q, HE H, LI Y X, et al. CeO2-supported Pt catalysts derived from MOFs by two pyrolysis strategies to improve the oxygen activation ability[J]. Nanomaterials, 2020, 10(5): 983. doi: 10.3390/nano10050983
[15] KIKKAWA S, TERAMURA K, KATO K, et al. Formation of CH4 at the metal-support interface of Pt/Al2O3 during hydrogenation of CO2: Operando XAS-DRIFTS study[J]. ChemCatChem, 2022, 14(10): e202101723. doi: 10.1002/cctc.202101723
[16] CAO W X, LIN L, QI H F, et al. In-situ synthesis of single-atom Ir by utilizing metal-organic frameworks: An acid-resistant catalyst for hydrogenation of levulinic acid to γ-valerolactone[J]. Journal of Catalysis, 2019, 373: 161-172. doi: 10.1016/j.jcat.2019.03.035
[17] WANG Z Q, ZHANG L X, JI J W, et al. Catalytic enhancement of small sizes of CeO2 additives on Ir/Al2O3 for toluene oxidation[J]. Applied Surface Science, 2022, 571: 151200. doi: 10.1016/j.apsusc.2021.151200
[18] CHANG S S, JIA Y, ZENG Y Q, et al. Effect of interaction between different CeO2 plane and platinum nanoparticles on catalytic activity of Pt/CeO2 in toluene oxidation[J]. Journal of Rare Earths, 2022, 40(11): 1743-1750. doi: 10.1016/j.jre.2021.10.009
[19] LI J, XIA T T, XU J C, et al. Boosting the plasma catalytic performance of CeO2/γ-Al2O3 in long-chain alkane VOCs via tuning the crystallite size[J]. Applied Surface Science, 2023, 611: 155742. doi: 10.1016/j.apsusc.2022.155742
[20] TAN W, XIE S H, CAI Y D, et al. Transformation of highly stable Pt single sites on defect engineered ceria into robust Pt clusters for vehicle emission control[J]. Environmental Science & Technology, 2021, 55(18): 12607-12618.
[21] ZHANG Q F, ZHOU Z B, FANG T, et al. Understanding the role of tungsten on Pt/CeO2 for vinyl chloride catalytic combustion[J]. Journal of Rare Earths, 2022, 40(9): 1462-1470. doi: 10.1016/j.jre.2021.09.012
[22] YOU W, ZHANG Q T, JIA H Y, et al. Insights into the state of ceria during ethanol steam reforming over Ir/CeO2[J]. Catalysis Science & Technology, 2023, 13(2): 558-572.
[23] CHEN B X, WANG B F, SUN Y H, et al. Plasma-assisted surface interactions of Pt/CeO2 catalyst for enhanced toluene catalytic oxidation[J]. Catalysts, 2018, 9(1): 2. doi: 10.3390/catal9010002
[24] MO S P, LI J, LIAO R Q, et al. Unraveling the decisive role of surface CeO2 nanoparticles in the Pt-CeO2/MnO2 hetero-catalysts for boosting toluene oxidation: Synergistic effect of surface decorated and intrinsic O-vacancies[J]. Chemical Engineering Journal, 2021, 418: 129399. doi: 10.1016/j.cej.2021.129399
[25] LU A L, SUN H L, ZHANG N W, et al. Surface partial-charge-tuned enhancement of catalytic activity of platinum nanocatalysts for toluene oxidation[J]. ACS Catalysis, 2019, 9(8): 7431-7442. doi: 10.1021/acscatal.9b01776
[26] WEI X Q, LI K, ZHANG X Y, et al. CeO2 nanosheets with anion-induced oxygen vacancies for promoting photocatalytic toluene mineralization: Toluene adsorption and reactive oxygen species[J]. Applied Catalysis B:Environmental, 2022, 317: 121694. doi: 10.1016/j.apcatb.2022.121694
[27] MO S P, ZHANG Q, LI J Q, et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: Oxygen-Vacancy defect engineering and involved intermediates using in situ DRIFTS[J]. Applied Catalysis B:Environmental, 2020, 264: 118464. doi: 10.1016/j.apcatb.2019.118464
[28] ZHANG L X, ZHU Z X, TAN W, et al. Thermal-driven optimization of the strong metal–support interaction of a platinum–Manganese oxide octahedral molecular sieve to promote toluene oxidation: Effect of the interface Pt2+–Ov–Mn δ+[J]. ACS Applied Materials & Interfaces, 2022, 14(51): 56790-56800.
[29] SUN W J, HUANG Y J, LI X M, et al. Catalytic combustion of toluene over highly dispersed Cu-CeOx derived from Cu-Ce-MOF by EDTA grafting method[J]. Catalysts, 2021, 11(4): 519. doi: 10.3390/catal11040519
[30] LU J H, ZHONG J P, REN Q M, et al. Construction of Cu-Ce interface for boosting toluene oxidation: Study of Cu-Ce interaction and intermediates identified by in situ DRIFTS[J]. Chinese Chemical Letters, 2021, 32(11): 3435-3439. doi: 10.1016/j.cclet.2021.05.029
[31] REN Q M, ZHAO X Y, ZHONG J P, et al. Unravelling the role of oxygen species in toluene oxidation over Co3O4-base catalysts: in situ DRIFTS coupled with quasi in situ XPS[J]. Journal of Catalysis, 2023, 418: 130-140. doi: 10.1016/j.jcat.2023.01.002
[32] LI M Y, ZHANG W L, ZHANG X W, et al. Influences of different surface oxygen species on oxidation of toluene and/or benzene and their reaction pathways over Cu-Mn metal oxides[J]. Journal of Colloid and Interface Science, 2023, 630: 301-316. doi: 10.1016/j.jcis.2022.10.107
[33] WANG Z W, MA P J, ZHENG K, et al. Size effect, mutual inhibition and oxidation mechanism of the catalytic removal of a toluene and acetone mixture over TiO2 nanosheet-supported Pt nanocatalysts[J]. Applied Catalysis B:Environmental, 2020, 274: 118963. doi: 10.1016/j.apcatb.2020.118963
[34] LIANG W J, ZHU Y X, REN S D, et al. Enhanced catalytic elimination of chlorobenzene over Ru/TiO2 modified with SnO2—Synergistic performance of oxidation and acidity[J]. Chemical Physics, 2023, 566: 111787. doi: 10.1016/j.chemphys.2022.111787
[35] YU K, DENG J, SHEN Y J, et al. Efficient catalytic combustion of toluene at low temperature by tailoring surficial Pt0 and interfacial Pt-Al(OH) x species[J]. iScience, 2021, 24(6): 102689. doi: 10.1016/j.isci.2021.102689