[1] |
SINGH A D, KHANNA K, KOUR J, et al. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies[J]. Chemosphere, 2023, 319: 137917. doi: 10.1016/j.chemosphere.2023.137917
|
[2] |
RYAN-FOGARTY Y, BALDÉ C P, WAGNER M, et al. Uncaptured mercury lost to the environment from waste electrical and electronic equipment (WEEE) in scrap metal and municipal wastes[J]. Resources, Conservation and Recycling, 2023, 191: 106881. doi: 10.1016/j.resconrec.2023.106881
|
[3] |
BECKERS F, RINKLEBE J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(9): 693-794. doi: 10.1080/10643389.2017.1326277
|
[4] |
TONG R P, YANG X Y, SU H R, et al. Levels, sources and probabilistic health risks of polycyclic aromatic hydrocarbons in the agricultural soils from sites neighboring suburban industries in Shanghai[J]. Science of the Total Environment, 2018, 616-617: 1365-1373. doi: 10.1016/j.scitotenv.2017.10.179
|
[5] |
LIU S J, WANG X D, GUO G L, et al. Status and environmental management of soil mercury pollution in China: A review[J]. Journal of Environmental Management, 2021, 277: 111442. doi: 10.1016/j.jenvman.2020.111442
|
[6] |
DING Q, CHENG G, WANG Y, et al. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions[J]. Science of the Total Environment, 2017, 578: 577-585. doi: 10.1016/j.scitotenv.2016.11.001
|
[7] |
楚纯洁, 周金风. 平顶山矿区丘陵坡地土壤重金属分布及污染特征[J]. 地理研究, 2014, 33(7): 1383-1392. doi: 10.11821/dlyj201407017
CHU C J, ZHOU J F. Distribution and pollution of soil heavy metals in hilly upland around Pingdingshan coal mining area[J]. Geographical Research, 2014, 33(7): 1383-1392 (in Chinese). doi: 10.11821/dlyj201407017
|
[8] |
董丽君, 张展华, 张彤. 土壤环境汞污染现状及其影响因素研究进展[J]. 地球与环境, 2022, 50(3): 397-414.
DONG L J, ZHANG Z H, ZHANG T. Mercury pollution in soil environment: Current status and its influencing factors[J]. Earth and Environment, 2022, 50(3): 397-414 (in Chinese).
|
[9] |
YANG S Y, ZHAO J, CHANG S X, et al. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis[J]. Environment International, 2019, 128: 165-174. doi: 10.1016/j.envint.2019.04.044
|
[10] |
周墨, 唐志敏, 张明, 等. 江西赣州地区土壤-水稻系统重金属含量特征及健康风险评价[J]. 地质通报, 2021, 40(12): 2149-2158.
ZHOU M, TANG Z M, ZHANG M, et al. Characteristics and health risk assessment of heavy metals in soil-rice system in the Ganzhou area, Jiangxi Province[J]. Geological Bulletin of China, 2021, 40(12): 2149-2158 (in Chinese).
|
[11] |
袁平旺, 王黎栋, 何培雍, 等. 粤北某离子吸附型稀土矿山土壤和地表水重金属分布及风险评价[J]. 中国环境监测, 2023, 39(1): 146-158.
YUAN P W, WANG L D, HE P Y, et al. Distribution and risk assessment of heavy metals in soil and surface water of an ion-absorbed rare earth mine in northern Guangdong[J]. Environmental Monitoring in China, 2023, 39(1): 146-158 (in Chinese).
|
[12] |
陈莹, 吴敏, 陈全, 等. Monte-Carlo模拟在土壤重金属生态风险评价中的应用[J]. 环境化学, 2023, 42(10): 3359-3367.
CHEN Y, WU M, CHEN Q, et al. Application of Monte-Carlo simulation in ecological risk assessment of heavy metals in soil[J]. Environmental Chemistry, 2023, 42(10): 3359-3367 (in Chinese).
|
[13] |
KHODAEI S M, ESFANDIARI Z, SAMI M, et al. Determination of metal(oids) in different traditional flat breads distributed in Isfahan city, Iran: Health risk assessment study by Latin hypercube sampling[J]. Toxicology Reports, 2023, 10: 382-388. doi: 10.1016/j.toxrep.2023.02.015
|
[14] |
黄剑波, 姜登登, 温冰, 等. 基于蒙特卡罗模拟的铅锌冶炼厂周边农田土壤重金属健康风险评估[J]. 环境科学, 2023, 44(4): 2204-2214.
HUANG J B, JIANG D D, WEN B, et al. Contamination and probabilistic heakth risk assessment of heavy metals in agricultural soils around a lead-zinc smelter[J]. Environmental Science, 2023, 44(4): 2204-2214 (in Chinese).
|
[15] |
庐江县人民政府. 庐江概况[EB/OL]. 庐江: 庐江县人民政府, [2022-04-22].
|
[16] |
李旋旋, 周涛发, 刘一男, 等. 安徽庐枞盆地矾山酸性蚀变岩帽形成时代及其地质意义[J]. 岩石学报, 2019, 35(12): 3782-3796. doi: 10.18654/1000-0569/2019.12.13
LI X X, ZHOU T F, LIU Y N, et al. Geochronology and geological significances of Fanshan lithocap in Luzong Basin, Anhui Province[J]. Acta Petrologica Sinica, 2019, 35(12): 3782-3796 (in Chinese). doi: 10.18654/1000-0569/2019.12.13
|
[17] |
US EPA. Exposure factors handbook 2011 edition(final)[M]. U. S. Environmental Protection Agency, Washington, D. C. , EPA/600/R-09/052F, 2011.
|
[18] |
GYAMFI O, SØRENSEN P B, DARKO G, et al. Contamination, exposure and risk assessment of mercury in the soils of an artisanal gold mining community in Ghana[J]. Chemosphere, 2021, 267: 128910. doi: 10.1016/j.chemosphere.2020.128910
|
[19] |
FERREIRA-BAPTISTA L, de MIGUEL E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment[J]. Atmospheric Environment, 2005, 39(25): 4501-4512. doi: 10.1016/j.atmosenv.2005.03.026
|
[20] |
BEATE L, STEPHAN B O, GUSTAV D. Proposal for a Revised Reference Concentration (RfC) for mercury vapour in adults[J]. Science of the Total Environment, 2010, 408(17): 3530-3535. doi: 10.1016/j.scitotenv.2010.04.027
|
[21] |
段小丽, 黄楠, 王贝贝, 等. 国内外环境健康风险评价中的暴露参数比较[J]. 环境与健康杂志, 2012, 29(2): 99-104.
DUAN X L, HUANG N, WANG B B, et al. Development of exposure factors research methods in environmental health risk assessment[J]. Journal of Environment and Health, 2012, 29(2): 99-104 (in Chinese).
|
[22] |
环境保护部. 中国人群暴露参数手册[M]. 儿童卷: 0-5岁. 北京: 中国环境出版社, 2016.
Ministry of Environmental Protection. Chinese Population Exposure Parameter Manual[M]. Children’s Volume: 0-5 years old. Beijing: China Scinece Environmental Press, 2016 (in Chinese).
|
[23] |
环境保护部. 中国人群暴露参数手册[M]. 儿童卷: 6-17岁. 北京: 中国环境出版社, 2016.
Ministry of Environmental Protection. Chinese Population Exposure Parameter Manual[M]. Children’s Volume: 6-17 years old. Beijing: China Scinece Environmental Press, 2016 (in Chinese).
|
[24] |
环境保护部. 中国人群暴露参数手册[M]. 成人卷. 北京: 中国环境出版社, 2013.
Ministry of Environmental Protection. Chinese Population Exposure Parameter Manual[M]. Adult Volume. Beijing: China Environmental Scinece Press, 2013 (in Chinese).
|
[25] |
McKAY M D, MORRISON J D, UPTON S C. Evaluating prediction uncertainty in simulation models[J]. Computer Physics Communications, 1999, 117(1-2): 44-51. doi: 10.1016/S0010-4655(98)00155-6
|
[26] |
章艳红, 喻成功, 唐玉红, 等. 抚河周边龙头山地区土-水系统中重(类)金属空间分布特征及来源分析[J]. 环境化学, 2023, 42(6): 1111-1121. doi: 10.7524/j.issn.0254-6108.2022071402
ZHANG Y H, YU C G, TANG Y H, et al. Spatial distribution characteristics and sources analysis of heavy metal(loid)s in a water-soil system of Longtoushan area around the Fuhe River[J]. Environmental Chemistry, 2023, 42(6): 1111-1121 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022071402
|
[27] |
安徽省土壤环境背景值调查研究报告[R]. 安徽省环境保护监测中心站, 1992.
Investigation and research report on background value of soil environment in Anhui Province[R]. Anhui Environmental Protection Monitoring Center Station, 1992 (in Chinese).
|
[28] |
生态环境部, 国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准: GB 15618—2018[S]. 北京: 中国标准出版社, 2018.
Ministry of Ecology and Environment of the People’s Republic of China, State Administration for Market Regulation. Soil environmental quality Risk control standard for soil contamination of agricultural land: GB 15618-2018[S]. Beijing: Standards Press of China, 2018 (in Chinese).
|
[29] |
张前进, 刘华, 陈永生, 等. 合肥老城区土壤重金属分布格局及树木富集重金属潜力[J]. 生态学杂志, 2020, 39(12): 4140-4147.
ZHANG Q J, LIU H, CHEN Y S, et al. Distribution pattern of heavy metals in soil and the potential of heavy metal enrichment by trees in the old town of Hefei City[J]. Chinese Journal of Ecology, 2020, 39(12): 4140-4147 (in Chinese).
|
[30] |
崔云霞, 曹炜琦, 李伟迪, 等. 长三角农业活动区农田土壤重金属风险评价[J]. 农业环境科学学报, 2021, 40(7): 1441-1450.
CUI Y X, CAO W Q, LI W D, et al. Risk assessment of heavy metals in farmland soils in an agricultural region in the Yangtze River Delta[J]. Journal of Agro-Environment Science, 2021, 40(7): 1441-1450 (in Chinese).
|
[31] |
王小莉, 陈志凡, 魏张东, 等. 开封市城乡交错区农田土壤重金属污染及潜在生态风险评价[J]. 环境化学, 2018, 37(3): 513-522. doi: 10.7524/j.issn.0254-6108.2017072407
WANG X L, CHEN Z F, WEI Z D, et al. Heavy metal pollution and potential ecological risk assessment in agricultural soils located in the peri-urban area of Kaifeng City[J]. Environmental Chemistry, 2018, 37(3): 513-522 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017072407
|
[32] |
左亚杰, 郭璋, 高文娟, 等. 关中平原土壤重金属生态风险评价——以杨凌示范区为例[J]. 干旱地区农业研究, 2022, 40(5): 260-267,276.
ZUO Y J, GUO Z, GAO W J, et al. Ecological risk assessment of soil heavy metals in Guanzhong Plain: A case study in Yangling Demonstration Area[J]. Agricultural Research in the Arid Areas, 2022, 40(5): 260-267,276 (in Chinese).
|
[33] |
柳峰, 李龙飞, 刘雨博, 等. 河北省某铅锌矿区周边耕地土壤重金属污染评价及来源分析[J]. 干旱区资源与环境, 2023, 37(1): 136-142.
LIU F, LI L F, LIU Y B, et al. Evaluation and sources of heavy metal pollution in soils of cultivated land around a lead-zinc mine area in Hebei Province[J]. Journal of Arid Land Resources and Environment, 2023, 37(1): 136-142 (in Chinese).
|
[34] |
MURESAN B, LIU Y, Le GAC Q, et al. In-line measurement of exhaust mercury emissions by an instrumented light-duty vehicle using both on-road and test track experiments[J]. Science of the Total Environment, 2022, 805: 150265. doi: 10.1016/j.scitotenv.2021.150265
|
[35] |
ARIYA P A, KHALIZOV A, GIDAS A. Reactions of gaseous mercury with atomic and molecular halogens: kinetics, product studies, and atmospheric implications[J]. The Journal of Physical Chemistry A, 2002, 106(32): 7310-7320. doi: 10.1021/jp020719o
|
[36] |
ÇELIK KARAKAYA M, KARAKAYA N, TEMEL A, et al. Mineralogical and geochemical properties and genesis of Kaolin and alunite deposits SE of Aksaray(Central Turkey)[J]. Applied Geochemistry, 2021, 124: 104830. doi: 10.1016/j.apgeochem.2020.104830
|
[37] |
张效伟. 氮硫掺杂石墨烯量子点电化学发光猝灭法测定明矾石中汞[J]. 冶金分析, 2021, 41(11): 57-62. doi: 10.13228/j.boyuan.issn1000-7571.011419
ZHANG X W. Determination of mercury in alunite by electrochemical luminescence quenching method based on nitrogen and sulfur co-doped graphene quantum dots[J]. Metallurgical Analysis, 2021, 41(11): 57-62 (in Chinese). doi: 10.13228/j.boyuan.issn1000-7571.011419
|
[38] |
STAUN C, VAUGHAN J, LOPEZ-ANTON M A, et al. Geochemical speciation of mercury in bauxite[J]. Applied Geochemistry, 2018, 93: 30-35. doi: 10.1016/j.apgeochem.2018.03.007
|
[39] |
RAMOS Q, ARMIENTA M A, AGUAYO A, et al. Evaluation of the interactions of arsenic (As), boron (B), and lead (Pb) from geothermal production wells with agricultural soils[J]. Ecotoxicology and Environmental Safety, 2021, 211: 111843. doi: 10.1016/j.ecoenv.2020.111843
|
[40] |
YANG Y K, ZHANG C, SHI X J, et al. Effect of organic matter and pH on mercury release from soils[J]. Journal of Environmental Sciences, 2007, 19(11): 1349-1354. doi: 10.1016/S1001-0742(07)60220-4
|
[41] |
YIN Y J, ALLEN H E, LI Y M, et al. Adsorption of mercury (II) by soil: Effects of pH, chloride, and organic matter[J]. Journal of Environmental Quality, 1996, 25(4): 837-844.
|
[42] |
JING Y D, HE Z L, YANG X E. Effects of pH, organic acids, and competitive cations on mercury desorption in soils[J]. Chemosphere, 2007, 69(10): 1662-1669. doi: 10.1016/j.chemosphere.2007.05.033
|
[43] |
VELÁSQUEZ RAMÍREZ M G, VEGA RUIZ C M, GOMRINGER R C, et al. Mercury in soils impacted by alluvial gold mining in the Peruvian Amazon[J]. Journal of Environmental Management, 2021, 288: 112364. doi: 10.1016/j.jenvman.2021.112364
|
[44] |
RAVICHANDRAN M. Interactions between mercury and dissolved organic matter–a review[J]. Chemosphere, 2004, 55(3): 319-331. doi: 10.1016/j.chemosphere.2003.11.011
|
[45] |
冯新斌, 王训, 孙广义, 等. 植被生态系统汞的生物地球化学循环研究进展与挑战[J]. 地球科学, 2022, 47(11): 4098-4107.
FEN X B, WANG X, SUN G Y, et al. Research progresses and challenges of mercury biogeochemical cycling in global vegetation ecosystem[J]. Earth Science, 2022, 47(11): 4098-4107 (in Chinese).
|
[46] |
CLIFTON J C. Mercury exposure and public health[J]. Pediatric Clinics of North America, 2007, 54(2): 237.
|
[47] |
HUBAL E A C, SHELDON L S, BURKE J M, et al. Children’s exposure assessment: A review of factors influencing children’s exposure, and the data available to characterize and assess that exposure[J]. Environmental Health Perspectives, 2000, 108(6): 475-486.
|
[48] |
JIN Z, LV J S. Evaluating source-oriented human health risk of potentially toxic elements: A new exploration of multiple age groups division[J]. Science of the Total Environment, 2021, 787: 147502. doi: 10.1016/j.scitotenv.2021.147502
|
[49] |
US EPA. Guidelines for human exposure assessment[M]. U. S. Environmental Protection Agency, Washington, D. C. , EPA/100/B-19/001, 2019.
|
[50] |
FRANKS P W, ATABAKI-PASDAR N. Causal inference in obesity research[J]. Journal of Internal Medicine, 2017, 281(3): 222-232. doi: 10.1111/joim.12577
|