[1] |
李晓密, 伦小秀, 陈琪, 等. 不同施肥处理下冬小麦-夏玉米轮作农田温室气体的排放[J]. 环境化学, 2014, 33(4): 591-596. doi: 10.7524/j.issn.0254-6108.2014.04.019
LI X M, LUN X X, CHEN Q, et al. Greenhouse gas emission from a winter wheat-summer maize crop rotation farmland under different fertilization treatments[J]. Environmental Chemistry, 2014, 33(4): 591-596 (in Chinese). doi: 10.7524/j.issn.0254-6108.2014.04.019
|
[2] |
闫昭明, 李文睿, 陈清华. 畜禽规模化养殖发展对我国生态环境的影响及保护措施[J]. 畜牧业环境, 2019(11): 10-11.
YAN Z M, LI W R, CHEN Q H. Influence of large-scale livestock and poultry breeding development on China’s ecological environment and its protection measures[J]. Animal Industry and Environment, 2019(11): 10-11 (in Chinese).
|
[3] |
VELTMAN K, ROTZ C A, CHASE L, et al. A quantitative assessment of Beneficial Management Practices to reduce carbon and reactive nitrogen footprints and phosphorus losses on dairy farms in theUS Great lakes region[J]. Agricultural Systems, 2018, 166: 10-25. doi: 10.1016/j.agsy.2018.07.005
|
[4] |
HUTCHINGS N, AMON B, DAMMGEN U. Animal husbandry and manure management[J]. EMEP/EEA air pollutant emission inventory guidebook, 2009: 1-73.
|
[5] |
AMON B, KRYVORUCHKO V, AMON T, et al. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment[J]. Agriculture, Ecosystems & Environment, 2006, 112(2/3): 153-162.
|
[6] |
AGUIRRE-VILLEGAS H A, LARSON R A. Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools[J]. Journal of Cleaner Production, 2017, 143: 169-179. doi: 10.1016/j.jclepro.2016.12.133
|
[7] |
BALSARI P, DINUCCIO E, SANTORO E, et al. Ammonia emissions from rough cattle slurry and from derived solid and liquid fractions applied to alfalfa pasture[J]. Australian Journal of Experimental Agriculture, 2008, 48(2): 198. doi: 10.1071/EA07234
|
[8] |
王浚峰, 高继伟, 冯英, 等. 现代化牧场的粪污处理[J]. 中国奶牛, 2011(2): 60-63.
WANG J F, GAO J W, FENG Y, et al. Treatment of manure in modern pasture[J]. China Dairy Cattle, 2011(2): 60-63. (in Chinese)
|
[9] |
GUILAYN F, JIMENEZ J, ROUEZ M, et al. Digestate mechanical separation: Efficiency profiles based on anaerobic digestion feedstock and equipment choice[J]. Bioresource Technology, 2019, 274: 180-189. doi: 10.1016/j.biortech.2018.11.090
|
[10] |
MEYER D, RISTOW PL, LIE M. Particle size and nutrient distribution in fresh dairy manure[J]. Applied Engineering in Agriculture, 2007, 23(1): 113-118. doi: 10.13031/2013.22318
|
[11] |
PETERS K, HJORTH M, JENSEN L S, et al. Carbon, nitrogen, and phosphorus distribution in particle size-fractionated separated pig and cattle slurry[J]. Journal of Environmental Quality, 2011, 40(1): 224-232. doi: 10.2134/jeq2010.0217
|
[12] |
AMON B, AMON T, BOXBERGER J, et al. Emissions of NH3, N2O and CH4 from dairy cows housed in a farmyard manure tying stall (housing, manure storage, manure spreading)[J]. Nutrient Cycling in Agroecosystems, 2001, 60(1): 103-113.
|
[13] |
VANOTTI M B, RASHASH D M C, HUNT P G. Solid–liquid separation of flushed swine manure with pam: Effect of wastewater strength[J]. Transactions of the ASAE, 2002, 45(6): 1959.
|
[14] |
ZHANG Z G, WANG J, LIU D, et al. Hydrolysis of polyaluminum chloride prior to coagulation: Effects on coagulation behavior and implications for improving coagulation performance[J]. Journal of Environmental Sciences, 2017, 57: 162-169. doi: 10.1016/j.jes.2016.10.014
|
[15] |
LIU Z, CARROLL Z S, LONG S C, et al. Use of cationic polymers to reduce pathogen levels during dairy manure separation[J]. Journal of Environmental Management, 2016, 166: 260-266.
|
[16] |
ALJUBOORI A H R, IDRIS A, ABDULLAH N, et al. Production and characterization of a bioflocculant produced by Aspergillus flavus[J]. Bioresource Technology, 2013, 127: 489-493. doi: 10.1016/j.biortech.2012.09.016
|
[17] |
SÁNCHEZ-MARTÍN J, GONZÁLEZ-VELASCO M, BELTRÁN-HEREDIA J. Surface water treatment with tannin-based coagulants from Quebracho (Schinopsis balansae)[J]. Chemical Engineering Journal, 2010, 165(3): 851-858. doi: 10.1016/j.cej.2010.10.030
|
[18] |
SINGH R, KUMAR S, GARG M. Domestic wastewater treatment using tanfloc: A tannin based coagulant[C]//Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment. Cham: Springer, 2016: 349-354.
|
[19] |
葛冬冬. 基于单宁酸调理改善污泥脱水性能的技术及机理研究[D]. 上海:上海交通大学, 2020.
GE D D. Tannic acidcid-based conditioning technology for improving sludge dewaterability and mechanism insight[D]. Shanghai: Shanghai Jiao Tong University, 2020 (in Chinese).
|
[20] |
NIEROP K G J, VERSTRATEN J M, TIETEMA A, et al. Short-and long-term tannin induced carbon, nitrogen and phosphorus dynamics in corsican pine litter[J]. Biogeochemistry, 2006, 79(3): 275-296. doi: 10.1007/s10533-005-5274-0
|
[21] |
NIEROP K G J, PRESTON C M, VERSTRATEN J M. Linking the B ring hydroxylation pattern of condensed tannins to C, N and P mineralization. A case study using four tannins[J]. Soil Biology and Biochemistry, 2006, 38(9): 2794-2802. doi: 10.1016/j.soilbio.2006.04.049
|
[22] |
孟祥海, 魏丹, 王玉峰, 等. 氮素水平与施氮方式对稻田氨挥发影响[J]. 黑龙江农业科学, 2011(12): 38-42.
MENG X H, WEI D, WANG Y F, et al Nitrogen levels and nitrogen application modes on ammonia volatilization effect[J]. Heilongjiang Agricultural Sciences, 2011(12): 38-42 (in Chinese).
|
[23] |
CABRERA M L, KISSEL D E, DAVIS R C, et al. Design and ammonia-recovery evaluation of a wind speed-sensitive chamber system[J]. Soil Science Society of America Journal, 2001, 65(4): 1302-1306. doi: 10.2136/sssaj2001.6541302x
|
[24] |
CHANGE I C. Synthesis report. Contribution of working groups Ⅰ. Ⅱ and III to the fifth assessment report of the intergovernmental panel on climate change, 2014,151(10.1017)[C].
|
[25] |
GRELL T, MARCHUK S, WILLIAMS I, et al. Resource recovery for environmental management of dilute livestock manure using a solid-liquid separation approach[J]. Journal of Environmental Management, 2023, 325(Pt A): 116254.
|
[26] |
FANGUEIRO D, SENBAYRAN M, TRINDADE H, et al. Cattle slurry treatment by screw press separation and chemically enhanced settling: Effect on greenhouse gas emissions after land spreading and grass yield[J]. Bioresource Technology, 2008, 99(15): 7132-7142. doi: 10.1016/j.biortech.2007.12.069
|
[27] |
WEN Y C, LI H Y, LIN Z A, et al. Long-term fertilization alters soil properties and fungal community composition in fluvo-aquic soil of the North China Plain[J]. Scientific Reports, 2020, 10(1): 7198. doi: 10.1038/s41598-020-64227-6
|
[28] |
DOMEIGNOZ-HORTA L A, PHILIPPOT L, PEYRARD C, et al. Peaks of in situ N2O emissions are influenced by N2O-producing and reducing microbial communities across arable soils[J]. Global Change Biology, 2018, 24(1): 360-370. doi: 10.1111/gcb.13853
|
[29] |
BLAGODATSKAYA Е, ZHENG X, BLAGODATSKY S, et al. Oxygen and substrate availability interactively control the temperature sensitivity of CO2 and N2O emission from soil[J]. Biology and Fertility of Soils, 2014, 50: 775-783. doi: 10.1007/s00374-014-0899-6
|
[30] |
CHARLES A, ROCHETTE P, WHALEN J K, et al. Global nitrous oxide emission factors from agricultural soils after addition of organic amendments: A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2017, 236: 88-98.
|
[31] |
XU X Y, LIU Y W, SINGH B P, et al. NosZ clade II rather than clade i determine in situ N2O emissions with different fertilizer types under simulated climate change and its legacy[J]. Soil Biology and Biochemistry, 2020, 150: 107974. doi: 10.1016/j.soilbio.2020.107974
|
[32] |
HÄTTENSCHWILER S, VITOUSEK P M. The role of polyphenols in terrestrial ecosystem nutrient cycling[J]. Trends in Ecology & Evolution, 2000, 15(6): 238-243.
|
[33] |
SAHINER N, SAGBAS S, SAHINER M, et al. Biocompatible and biodegradable poly(tannic acid) hydrogel with antimicrobial and antioxidant properties[J]. International Journal of Biological Macromolecules, 2016, 82: 150-159. doi: 10.1016/j.ijbiomac.2015.10.057
|
[34] |
FANGUEIRO D, CHADWICK D, DIXON L, et al. Quantification of priming and CO2 emission sources following the application of different slurry particle size fractions to a grassland soil[J]. Soil Biology and Biochemistry, 2007, 39(10): 2608-2620. doi: 10.1016/j.soilbio.2007.05.012
|
[35] |
MASSE L, MASSÉ D I, BEAUDETTE V, et al. Size distribution and composition of particles in raw and anaerobically digested swine manure[J]. Transactions of the ASAE, 2005, 48(5): 1943-1949. doi: 10.13031/2013.20003
|
[36] |
ADAMCZYK S, KIIKKILÄ O, KITUNEN V, et al. Potential response of soil processes to diterpenes, triterpenes and tannins: Nitrification, growth of microorganisms and precipitation of proteins[J]. Applied Soil Ecology, 2013, 67: 47-52. doi: 10.1016/j.apsoil.2013.02.009
|
[37] |
KRAUS T E C, ZASOSKI R J, DAHLGREN R A, et al. Carbon and nitrogen dynamics in a forest soil amended with purified tannins from different plant species[J]. Soil Biology and Biochemistry, 2004, 36(2): 309-321. doi: 10.1016/j.soilbio.2003.10.006
|
[38] |
DINUCCIO E, BERG W, BALSARI P. Effects of mechanical separation on GHG and ammonia emissions from cattle slurry under winter conditions[J]. Animal Feed Science and Technology, 2011, 166/167: 532-538. doi: 10.1016/j.anifeedsci.2011.04.037
|