[1] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5672): 838 doi: 10.1126/science.1094559
[2] ALLEN S, ALLEN D, PHOENIX V R, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment[J]. Nature Geoscience, 2019, 12(5): 339-344. doi: 10.1038/s41561-019-0335-5
[3] DRIS R, GASPERI J, ROCHER V, et al. Microplastic contamination in an urban area: A case study in Greater Paris[J]. Environmental Chemistry, 2015, 12(5): 592-599. doi: 10.1071/EN14167
[4] CAI L Q, WANG J D, PENG J P, et al. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: Preliminary research and first evidence[J]. Environmental Science and Pollution Research, 2017, 24(32): 24928-24935. doi: 10.1007/s11356-017-0116-x
[5] KLEIN M, FISCHER E K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany[J]. Science of the Total Environment, 2019, 685: 96-103. doi: 10.1016/j.scitotenv.2019.05.405
[6] WRIGHT S L, ULKE J, FONT A, et al. Atmospheric microplastic deposition in an urban environment and an evaluation of transport[J]. Environment International, 2020, 136: 105411. doi: 10.1016/j.envint.2019.105411
[7] ABBASI S, KESHAVARZI B, MOORE F, et al. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran[J]. Environmental Pollution, 2019, 244: 153-164. doi: 10.1016/j.envpol.2018.10.039
[8] SHRUTI V C, KUTRALAM-MUNIASAMY G, PÉREZ-GUEVARA F, et al. Occurrence and characteristics of atmospheric microplastics in Mexico City[J]. Science of the Total Environment, 2022, 847: 157601. doi: 10.1016/j.scitotenv.2022.157601
[9] DRIS R, GASPERI J, MIRANDE C, et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments[J]. Environmental Pollution, 2017, 221: 453-458. doi: 10.1016/j.envpol.2016.12.013
[10] AMATO-LOURENÇO L F, dos SANTOS GALVÃO L, WIEBECK H, et al. Atmospheric microplastic fallout in outdoor and indoor environments in São Paulo megacity[J]. Science of the Total Environment, 2022, 821: 153450. doi: 10.1016/j.scitotenv.2022.153450
[11] ZHANG Q, XU E G, LI J N, et al. A review of microplastics in table salt, drinking water, and air: Direct human exposure[J]. Environmental Science & Technology, 2020, 54(7): 3740-3751.
[12] PAULY J L, STEGMEIER S J, ALLAART H A, et al. Inhaled cellulosic and plastic fibers found in human lung tissue[J]. Cancer Epidemiology Biomarkers & Prevention, 1998, 7(5): 419-428.
[13] AMATO-LOURENÇO L F, CARVALHO-OLIVEIRA R, JÚNIOR G R, et al. Presence of airborne microplastics in human lung tissue[J]. Journal of Hazardous Materials, 2021, 416: 126124. doi: 10.1016/j.jhazmat.2021.126124
[14] JENNER L C, ROTCHELL J M, BENNETT R T, et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy[J]. Science of the Total Environment, 2022, 831: 154907. doi: 10.1016/j.scitotenv.2022.154907
[15] QIU L, LU W F, TU C L, et al. Evidence of microplastics in bronchoalveolar lavage fluid among never-smokers: A prospective case series[J]. Environmental Science & Technology, 2023, 57(6): 2435-2444.
[16] BAEZA-MARTÍNEZ C, OLMOS S, GONZÁLEZ-PLEITER M, et al. First evidence of microplastics isolated in European citizens' lower airway[J]. Journal of Hazardous Materials, 2022, 438: 129439. doi: 10.1016/j.jhazmat.2022.129439
[17] HUANG S M, HUANG X X, BI R, et al. Detection and analysis of microplastics in human sputum[J]. Environmental Science & Technology, 2022, 56(4): 2476-2486.
[18] JIANG Y, HAN J C, NA J, et al. Exposure to microplastics in the upper respiratory tract of indoor and outdoor workers[J]. Chemosphere, 2022, 307: 136067. doi: 10.1016/j.chemosphere.2022.136067
[19] PRATA J C, SILVA A L P, Da COSTA J P, et al. Microplastics in internal tissues of companion animals from urban environments[J]. Animals, 2022, 12(15): 1979. doi: 10.3390/ani12151979
[20] TOKUNAGA Y, OKOCHI H, TANI Y, et al. Airborne microplastics detected in the lungs of wild birds in Japan[J]. Chemosphere, 2023, 321: 138032. doi: 10.1016/j.chemosphere.2023.138032
[21] PRATA J C. Airborne microplastics: Consequences to human health?[J]. Environmental Pollution, 2018, 234: 115-126. doi: 10.1016/j.envpol.2017.11.043
[22] PIMENTEL J C, AVILA R, LOURENCO A G. Respiratory disease caused by synthetic fibres: A new occupational disease[J]. Thorax, 1975, 30(2): 204-219. doi: 10.1136/thx.30.2.204
[23] VALIC F, ZUSKIN E. Respiratory-function changes in textile workers exposed to synthetic fibers[J]. Archives of Environmental Health:An International Journal, 1977, 32(6): 283-287. doi: 10.1080/00039896.1977.10667296
[24] ZUSKIN E, MUSTAJBEGOVIC J, SCHACHTER E N, et al. Respiratory findings in synthetic textile workers[J]. American Journal of Industrial Medicine, 1998, 33(3): 263-273. doi: 10.1002/(SICI)1097-0274(199803)33:3<263::AID-AJIM8>3.0.CO;2-X
[25] ATIS S, TUTLUOGLU B, LEVENT E, et al. The respiratory effects of occupational polypropylene flock exposure[J]. European Respiratory Journal, 2005, 25(1): 110-117. doi: 10.1183/09031936.04.00138403
[26] KERN D G, KUHN C III, ELY E W, et al. Flock worker's lung[J]. Chest, 2000, 117(1): 251-259. doi: 10.1378/chest.117.1.251
[27] KERN D G, CRAUSMAN R S, DURAND K T, et al. Flock worker's lung: chronic interstitial lung disease in the nylon flocking industry[J]. Annals of Internal Medicine, 1998, 129(4): 261-272. doi: 10.7326/0003-4819-129-4-199808150-00001
[28] WASHKO R, BURKHART J, PIACITELLI C. Health hazard evaluation report 96-0093-2685[R]. Pawtucket, Rhode Island: Microfibres, Incorporated, 1998
[29] WASHKO R M, DAY B, PARKER J E, et al. Epidemiologic investigation of respiratory morbidity at a nylon flock plant[J]. American Journal of Industrial Medicine, 2000, 38(6): 628-638. doi: 10.1002/1097-0274(200012)38:6<628::AID-AJIM3>3.0.CO;2-U
[30] ESCHENBACHER W L, KREISS K, LOUGHEED M D, et al. Nylon flock-associated interstitial lung disease[J]. American Journal of Respiratory and Critical Care Medicine, 1999, 159(6): 2003-2008. doi: 10.1164/ajrccm.159.6.9808002
[31] 陈洪权, 刘铁民, 高树浩, 等. 聚氯乙烯塑料尘肺调查与实验研究[J]. 工业卫生与职业病, 1984(4): 211-214. doi: 10.13692/j.cnki.gywsyzyb.1984.04.007 CHEN H Q, LIU T M, GAO S H, et al. Investigation and experimental study on pneumoconiosis caused by vinyl chloride plastic[J]. Industrial Health and Occupational Diseases, 1984(4): 211-214(in Chinese). doi: 10.13692/j.cnki.gywsyzyb.1984.04.007
[32] STUDNICKA M J, MENZINGER G, DRLICEK M, et al. Pneumoconiosis and systemic sclerosis following 10 years of exposure to polyvinyl chloride dust[J]. Thorax, 1995, 50(5): 583-589 doi: 10.1136/thx.50.5.583
[33] CHEN Q Q, GAO J N, YU H R, et al. An emerging role of microplastics in the etiology of lung ground glass nodules[J]. Environmental Sciences Europe, 2022, 34(1):25.
[34] FOURNIER S B, D ERRICO J N, ADLER D S, et al. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy[J]. Particle and Fibre Toxicology, 2020, 17(1): 55. doi: 10.1186/s12989-020-00385-9
[35] HAN Y, SONG Y, KIM G W, et al. No prominent toxicity of polyethylene microplastics observed in neonatal mice following intratracheal instillation to dams during gestational and neonatal period[J]. Toxicological Research, 2021, 37(4): 443-450. doi: 10.1007/s43188-020-00086-7
[36] FAN Z, XIAO T, LUO H J, et al. A study on the roles of long non-coding RNA and circular RNA in the pulmonary injuries induced by polystyrene microplastics[J]. Environment International, 2022, 163: 107223. doi: 10.1016/j.envint.2022.107223
[37] LIM D, JEONG J, SONG K S, et al. Inhalation toxicity of polystyrene micro(nano)plastics using modified OECD TG 412[J]. Chemosphere, 2021, 262: 128330. doi: 10.1016/j.chemosphere.2020.128330
[38] LI X R, ZHANG T T, LV W T, et al. Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/β-catenin signaling pathway in mice[J]. Ecotoxicology and Environmental Safety, 2022, 232: 113238. doi: 10.1016/j.ecoenv.2022.113238
[39] LI Y T, SHI T, LI X, et al. Inhaled tire-wear microplastic particles induced pulmonary fibrotic injury via epithelial cytoskeleton rearrangement[J]. Environment International, 2022, 164: 107257. doi: 10.1016/j.envint.2022.107257
[40] CAO J W, XU R, GENG Y, et al. Exposure to polystyrene microplastics triggers lung injury via targeting toll-like receptor 2 and activation of the NF-κB signal in mice[J]. Environmental Pollution, 2023, 320: 121068. doi: 10.1016/j.envpol.2023.121068
[41] JI Y X, WANG Y Q, SHEN D Z, et al. Mucin corona delays intracellular trafficking and alleviates cytotoxicity of nanoplastic-benzopyrene combined contaminant[J]. Journal of Hazardous Materials, 2021, 406: 124306. doi: 10.1016/j.jhazmat.2020.124306
[42] ZHANG T Y, YANG S, GE Y L, et al. Polystyrene nanoplastics induce lung injury via activating oxidative stress: Molecular insights from bioinformatics analysis[J]. Nanomaterials, 2022, 12(19): 3507. doi: 10.3390/nano12193507
[43] LU K, LAI K P, STOEGER T, et al. Detrimental effects of microplastic exposure on normal and asthmatic pulmonary physiology[J]. Journal of Hazardous Materials, 2021, 416: 126069. doi: 10.1016/j.jhazmat.2021.126069
[44] DANSO I K, WOO J H, LEE K. Pulmonary toxicity of polystyrene, polypropylene, and polyvinyl chloride microplastics in mice[J]. Molecules, 2022, 27(22): 7926. doi: 10.3390/molecules27227926
[45] WOO J H, SEO H J, LEE J Y, et al. Polypropylene nanoplastic exposure leads to lung inflammation through p38-mediated NF-κB pathway due to mitochondrial damage[J]. Particle and Fibre Toxicology, 2023, 20(1): 2. doi: 10.1186/s12989-022-00512-8
[46] LU H M, YIN K, SU H, et al. Polystyrene microplastics induce autophagy and apoptosis in birds lungs via PTEN/PI3K/AKT/mTOR[J]. Environmental Toxicology, 2023, 38(1): 78-89. doi: 10.1002/tox.23663
[47] ZHA H, XIA J F, LI S J, et al. Airborne polystyrene microplastics and nanoplastics induce nasal and lung microbial dysbiosis in mice[J]. Chemosphere, 2023, 310: 136764. doi: 10.1016/j.chemosphere.2022.136764
[48] LI L Z, XU Y, LI S X, et al. Molecular modeling of nanoplastic transformations in alveolar fluid and impacts on the lung surfactant film[J]. Journal of Hazardous Materials, 2022, 427: 127872. doi: 10.1016/j.jhazmat.2021.127872
[49] SHI W M, CAO Y, CHAI X L, et al. Potential health risks of the interaction of microplastics and lung surfactant[J]. Journal of Hazardous Materials, 2022, 429: 128109. doi: 10.1016/j.jhazmat.2021.128109
[50] DONKERS J M, HÖPPENER E M, GRIGORIEV I, et al. Advanced epithelial lung and gut barrier models demonstrate passage of microplastic particles[J]. Microplastics and Nanoplastics, 2022, 2(1): 6. doi: 10.1186/s43591-021-00024-w
[51] ZHANG Y X, WANG M, YANG L Y, et al. Bioaccumulation of differently-sized polystyrene nanoplastics by human lung and intestine cells[J]. Journal of Hazardous Materials, 2022, 439: 129585. doi: 10.1016/j.jhazmat.2022.129585
[52] LAW B D, BUNN W B, HESTERBERG T W. Solubility of polymeric organic fibers and manmade vitreous fibers in gambles solution[J]. Inhalation Toxicology, 1990, 2(4): 321-339. doi: 10.3109/08958379009145261
[53] MAGRÌ D, SÁNCHEZ-MORENO P, CAPUTO G, et al. Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: Characterization and toxicology assessment[J]. ACS Nano, 2018, 12(8): 7690-7700. doi: 10.1021/acsnano.8b01331
[54] 陈梦洁. 纳米聚苯乙烯在模拟肺液中的凝聚和在水环境中的吸附行为研究[D]. 太原: 太原理工大学, 2021. CHEN M J. Study on the aggregation of nano-polystyrene in simulated lung fluid and its adsorption behavior in water environment[D]. Taiyuan: Taiyuan University of Technology, 2021(in Chinese).
[55] XU M K, HALIMU G, ZHANG Q R, et al. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell[J]. Science of the Total Environment, 2019, 694: 133794. doi: 10.1016/j.scitotenv.2019.133794
[56] GOODMAN K E, HARE J T, KHAMIS Z I, et al. Exposure of human lung cells to polystyrene microplastics significantly retards cell proliferation and triggers morphological changes[J]. Chemical Research in Toxicology, 2021, 34(4): 1069-1081. doi: 10.1021/acs.chemrestox.0c00486
[57] DONG C D, CHEN C W, CHEN Y C, et al. Polystyrene microplastic particles: In vitro pulmonary toxicity assessment[J]. Journal of Hazardous Materials, 2020, 385: 121575. doi: 10.1016/j.jhazmat.2019.121575
[58] SHI Q Y, TANG J C, LIU X M, et al. Ultraviolet-induced photodegradation elevated the toxicity of polystyrene nanoplastics on human lung epithelial A549 cells[J]. Environmental Science:Nano, 2021, 8(9): 2660-2675. doi: 10.1039/D1EN00465D
[59] COYLE J P, DERK R C, KORNBERG T G, et al. Carbon nanotube filler enhances incinerated thermoplastics-induced cytotoxicity and metabolic disruption in vitro[J]. Particle and Fibre Toxicology, 2020, 17(1): 40. doi: 10.1186/s12989-020-00371-1
[60] SONG S S, DIJK F V, ECK G, et al. Inhalable textile microplastic fibers impair lung repair[C]//Occupational and environmental health. European Respiratory Society, 2022.
[61] YANG S, CHENG Y P, CHEN Z Z, et al. In vitro evaluation of nanoplastics using human lung epithelial cells, microarray analysis and co-culture model[J]. Ecotoxicology and Environmental Safety, 2021, 226: 112837. doi: 10.1016/j.ecoenv.2021.112837
[62] WINKLER A S, CHERUBINI A, RUSCONI F, et al. Human airway organoids and microplastic fibers: A new exposure model for emerging contaminants[J]. Environment International, 2022, 163: 107200. doi: 10.1016/j.envint.2022.107200
[63] SHI Q Y, TANG J C, WANG L, et al. Combined cytotoxicity of polystyrene nanoplastics and phthalate esters on human lung epithelial A549 cells and its mechanism[J]. Ecotoxicology and Environmental Safety, 2021, 213: 112041. doi: 10.1016/j.ecoenv.2021.112041
[64] WANG C, WU W J, PANG Z F, et al. Polystyrene microplastics significantly facilitate influenza A virus infection of host cells[J]. Journal of Hazardous Materials, 2023, 446: 130617. doi: 10.1016/j.jhazmat.2022.130617
[65] SHI X R, WANG X N, HUANG R, et al. Cytotoxicity and genotoxicity of polystyrene micro- and nanoplastics with different size and surface modification in A549 cells[J]. International Journal of Nanomedicine, 2022, 17: 4509-4523. doi: 10.2147/IJN.S381776
[66] JEON M S, KIM J W, HAN Y B, et al. Polystyrene microplastic particles induce autophagic cell death in BEAS-2B human bronchial epithelial cells[J]. Environmental Toxicology, 2023, 38(2): 359-367. doi: 10.1002/tox.23705