[1] 徐建明, 孟俊, 刘杏梅, 等. 我国农田土壤重金属污染防治与粮食安全保障[J]. 中国科学院院刊, 2018, 33(2): 153-159. XU J M, MENG J, LIU X M, et al. Control of heavy metal pollution in farmland of China in terms of food security[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 153-159 (in Chinese).
[2] DEMKOVÁ L, ÁRVAY J, BOBUĽSKÁ L, et al. Open mining pits and heaps of waste material as the source of undesirable substances: Biomonitoring of air and soil pollution in former mining area (Dubnik, Slovakia)[J]. Environmental Science and Pollution Research international, 2019, 26(34): 35227-35239. doi: 10.1007/s11356-019-06582-0
[3] SHEN X Y, CHI Y K, XIONG K N. The effect of heavy metal contamination on humans and animals in the vicinity of a zinc smelting facility[J]. PLoS One, 2019, 14(10): e0207423. doi: 10.1371/journal.pone.0207423
[4] 叶脉, 张景茹, 张路路, 等. 广东鼻咽癌高发区土壤-作物系统重金属迁移特征及健康风险评价[J]. 环境科学, 2020, 41(12): 5579-5588. YE M, ZHANG J R, ZHANG L L, et al. Transfer Factor and Health Risk Assessment of Heavy Metals in a soil-crop System in a High Incidence area of nasopharyngeal carcinoma, Guangdong[J]. Environmental Science, 2020, 41(12): 5579-5588 (in Chinese).
[5] 郭利双, 何叔军, 李景龙. 镉污染区棉花替代种植技术研究[J]. 中国棉花, 2016, 43(11): 5-8+4. GUO L S, HE S J, LI J L. Research progress on planting technology of cotton as a substitute crop in polluted area by Cd[J]. China Cotton, 2016, 43(11): 5-8+4 (in Chinese).
[6] 陆成云, 黎霞, 王代旺, 等. 花卉修复污染环境的研究现状及发展潜力[J]. 江西农业学报, 2015, 27(2): 49-53. doi: 10.3969/j.issn.1001-8581.2015.02.012 LU C Y, LI X, WANG D W, et al. Research Status and Developmental Potential of Flower Remediation Technology for Polluted Environment[J]. Acta Agriculturae Jiangxi, 2015, 27(2): 49-53 (in Chinese). doi: 10.3969/j.issn.1001-8581.2015.02.012
[7] 颜新培, 黄仁志, 何君, 等. 重金属污染稻田桑树替代种植模式研究[C]//中国农学会耕作制度分会2016年学术年会论文摘要集. 乌鲁木齐, 2016: 27.
[8] 佘玮, 揭雨成, 邢虎成, 等. 苎麻耐镉品种差异及其筛选指标分析[J]. 作物学报, 2011, 37(2): 348-354. SHE W, JIE Y C, XING H C, et al. Comparison and screening indicators for ramie (Boehmeria nivea) genotypes tolerant to cadmium[J]. Acta Agronomica Sinica, 2011, 37(2): 348-354 (in Chinese).
[9] 胡鹏杰, 李柱, 吴龙华. 我国农田土壤重金属污染修复技术、问题及对策诌议[J]. 农业现代化研究, 2018, 39(4): 535-542. HU P J, LI Z, WU L H. Current remediation technologies of heavy metal polluted farmland soil in China: Progress, challenge and countermeasure[J]. Research of Agricultural Modernization, 2018, 39(4): 535-542 (in Chinese).
[10] 张彩丽, 陈磊, 江懿, 等. 土壤铅镉污染修复中植物修复技术的研究进展[J]. 中国沼气, 2019, 37(2): 40-44. ZHANG C L, CHEN L, JIANG Y, et al. Research progress of phytoremediation for soil pollution caused by lead and cadmium[J]. China Biogas, 2019, 37(2): 40-44 (in Chinese).
[11] SINGH P, KRISHNA A, KUMAR V, et al. Chemistry and biology of industrial crop Tagetes Species: A review[J]. Journal of Essential Oil Research, 2016, 28(1): 1-14. doi: 10.1080/10412905.2015.1076740
[12] 李娜, 王平, 吴志刚, 等. 色素万寿菊研究现状及发展前景[J]. 北方园艺, 2010(10): 228-231. LI N, WANG P, WUZ G, et al. Research status and development prospects on marigold[J]. Northern Horticulture, 2010(10): 228-231 (in Chinese).
[13] Singh N, Thakur R, Sharma M. A Review on Pharmacological aspects of Tagetes erecta Linn[J]. Journal of Pharmaceutical Sciences, 2019, 7(9): 16-24.
[14] 林登贵, 曾丽, 王鹏, 等. 万寿菊研究现状及发展趋势[J]. 上海农业学报, 2014, 30(6): 145-149. LIN D G, ZENG L, WANG P, et al. Research status and development trend of marigold[J]. Acta Agriculturae Shanghai, 2014, 30(6): 145-149 (in Chinese).
[15] LAL K, MINHAS P S, CHATURVEDI R K, et al. Extraction of cadmium and tolerance of three annual cut flowers on Cd-contaminated soils[J]. Bioresource Technology, 2008, 99(5): 1006-1011. doi: 10.1016/j.biortech.2007.03.005
[16] BOSIACKI M. Phytoextraction of cadmium and lead by selected cultivars of Tagetes erecta L. Part II. Contents of Cd and Pb in plants[J]. Acta Scientiarum Polonorum-Hortorum Cultus, 2009, 8: 15-26.
[17] 刘灵芝, 张玉龙, 李培军, 等. 铅锌矿区分离丛枝菌根真菌对万寿菊生长与吸镉的影响[J]. 土壤学报, 2012, 49(1): 43-49. LIU L Z, ZHANG Y L, LI P J, et al. Effect of arbuscular mycorrhizal fungi isolated from mining area on growth and Cd uptake of Tagetes erecta L[J]. Acta Pedologica Sinica, 2012, 49(1): 43-49 (in Chinese).
[18] SUN R L, SUN Q Q, WANG R Q, et al. Cadmium accumulation and main rhizosphere characteristics of seven French marigold (Tagetes patula L. ) cultivars[J]. International Journal of Phytoremediation, 2018, 20(12): 1171-1178. doi: 10.1080/15226514.2017.1375894
[19] 韩雷, 陈娟, 杜平, 等. 不同钝化剂对Cd污染农田土壤生态安全的影响[J]. 环境科学研究, 2018, 31(7): 1289-1295. HAN L, CHEN J, DU P, et al. Assessing the ecological security of the cadmium contaminated farmland treated with different amendments[J]. Research of Environmental Sciences, 2018, 31(7): 1289-1295 (in Chinese).
[20] AHMAD M, USMAN A R A, AL-FARAJ A S, et al. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L. ) plants[J]. Chemosphere, 2018, 194: 327-339. doi: 10.1016/j.chemosphere.2017.11.156
[21] CUI L Q, PAN G X, LI L Q, et al. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment[J]. Ecological Engineering, 2016, 93: 1-8. doi: 10.1016/j.ecoleng.2016.05.007
[22] 袁兴超, 李博, 朱仁凤, 等. 不同钝化剂对铅锌矿区周边农田镉铅污染钝化修复研究[J]. 农业环境科学学报, 2019, 38(4): 807-817. YUAN X C, LI B, ZHU R F, et al. Immobilization of Cd and Pb using different amendments of cultivated soils around lead-zinc mines[J]. Journal of Agro-Environment Science, 2019, 38(4): 807-817 (in Chinese).
[23] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. BAO S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000(in Chinese).
[24] QUEVAUVILLER P, RAURET G, MUNTAU H, et al. Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments[J]. Fresenius’Journal of Analytical Chemistry, 1994, 349(12): 808-814. doi: 10.1007/BF00323110
[25] 杨静, 谭永锋, 肖志强, 等. 不同剂量石灰对酸化稻田土壤养分含量及水稻产量的影响[J]. 安徽农业科学, 2015, 43(36): 175-176,179. doi: 10.3969/j.issn.0517-6611.2015.36.068 YANG J, TAN Y F, XIAO Z Q, et al. Effects of different application doses of lime on acidification paddy soil and rice yield[J]. Journal of Anhui Agricultural Sciences, 2015, 43(36): 175-176,179 (in Chinese). doi: 10.3969/j.issn.0517-6611.2015.36.068
[26] 吕波, 王宇函, 夏浩, 等. 不同改良剂对黄棕壤和红壤上白菜生长及土壤肥力影响的差异[J]. 中国农业科学, 2018, 51(22): 4306-4315. LÜ B, WANG Y H, XIA H, et al. Effects of biochar and other amendments on the cabbage growth and soil fertility in yellow-brown soil and red soil[J]. Scientia Agricultura Sinica, 2018, 51(22): 4306-4315 (in Chinese).
[27] 武玉, 徐刚, 吕迎春, 等. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 2014, 29(1): 68-79. WU Y, XU G, LÜ Y C, et al. Effects of biochar amendment on soil physical and chemical properties: Current status and knowledge gaps[J]. Advances in Earth Science, 2014, 29(1): 68-79 (in Chinese).
[28] 杜彩艳, 祖艳群, 李元. pH和有机质对土壤中镉和锌生物有效性影响研究[J]. 云南农业大学学报, 2005, 20(4): 539-543. DU C Y, ZU Y Q, LI Y. Effect of pH and organic matter on the bioavailability Cd and Zn in soil[J]. Journal of Yunnan Agricultural University, 2005, 20(4): 539-543 (in Chinese).
[29] 丁疆华, 温琰茂, 舒强. 土壤环境中镉、锌形态转化的探讨[J]. 城市环境与城市生态, 2001, 14(2): 47-49. DING J H, WEN Y M, SHU Q. Fraction Transfor mation of Cadmium and Zinc in Soils[J]. Urban Environment & Urban Ecology, 2001, 14(2): 47-49 (in Chinese).
[30] 王浩, 章明奎. 有机质积累和酸化对污染土壤重金属释放潜力的影响[J]. 土壤通报, 2009, 40(3): 538-541. WANG H, ZHANG M K. Effects of organic matter accumulation and acidification on release potential of heavy metals from polluted soils[J]. Chinese Journal of Soil Science, 2009, 40(3): 538-541 (in Chinese).
[31] 曹勤英, 黄志宏. 污染土壤重金属形态分析及其影响因素研究进展[J]. 生态科学, 2017, 36(6): 222-232. CAO Q Y, HUANG Z H. Review on speciation analysis of heavy metals in polluted soils and its influencing factors[J]. Ecological Science, 2017, 36(6): 222-232 (in Chinese).
[32] 袁金华, 徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展[J]. 生态环境学报, 2011, 20(4): 779-785. YUAN J H, XU R K. Progress of the research on the properties of biochars and their influence on soil environmental functions[J]. Ecology and Environmental Sciences, 2011, 20(4): 779-785 (in Chinese).
[33] 范春辉, 张颖超, 王家宏. 黄土区秸秆腐殖化溶解性有机质对土壤铅赋存形态的影响机制[J]. 光谱学与光谱分析, 2015, 35(11): 3146-3150. FAN C H, ZHANG Y C, WANG J H. Influence mechanism of dissolved organic matter(DOM)from straw humification on chemical speciation of lead in loess region[J]. Spectroscopy and Spectral Analysis, 2015, 35(11): 3146-3150 (in Chinese).
[34] 吴让啸, 朱珠, 常耀, 等. 镉胁迫对6种菊科花卉种子萌发及幼苗生长的影响[J]. 分子植物育种, 2020, 18(19): 6483-6490. WU R X, ZHU Z, CHANG Y, et al. Effects of cadmium(Cd) on seed germination and seedling growth of 6 species of Compositae[J]. Molecular Plant Breeding, 2020, 18(19): 6483-6490 (in Chinese).
[35] 陆干, 李磊明, 陶祥运, 等. Pb、Cu胁迫对玉米(Zea mays L. )生长、细胞色素合成以及重金属吸收特性的影响[J]. 安徽农业大学学报, 2017, 44(5): 905-911. LU G, LI L M, TAO X Y, et al. Effects of lead and copper stress on growth, pigment content and heavy metal absorption in corn (Zea mays L. )[J]. Journal of Anhui Agricultural University, 2017, 44(5): 905-911 (in Chinese).
[36] GB 2762—2017《食品安全国家标准 食品中污染物限量》[J]. 中国食品卫生杂志, 2018, 30(3): 329-340. GB 2762—2017 “national standards for food safety-limits of pollutants in food”[J]. Chinese Journal of Food Hygiene, 2018, 30(3): 329-340 (in Chinese).
[37] SHAH K, MANKAD A U, REDDY M N. Lead accumulation and its effects on growth and biochemical parameters in Tagetes erecta L[J]. International Journal of Life- Sciences Scientific Research, 2017, 3(4): 1142-1147. doi: 10.21276/ijlssr.2017.3.4.7
[38] SHAH K, MANKAD A, REDDY M. Cadmium accumulation and its effects on growth and biochemical parameters in Tagetes erecta L[J]. Journal of Pharmacognosy and Phytochemistry, 2017, 6(3): 111-115.
[39] COELHO L C, BASTOS A R R, PINHO P J, et al. Marigold (Tagetes erecta): The potential value in the phytoremediation of chromium[J]. Pedosphere, 2017, 27(3): 559-568. doi: 10.1016/S1002-0160(17)60351-5
[40] GOSWAMI S, DAS S. Screening of cadmium and copper phytoremediation ability of Tagetes erecta, using biochemical parameters and scanning electron microscopy-energy-dispersive X-ray microanalysis[J]. Environmental Toxicology and Chemistry, 2017, 36(9): 2533-2542. doi: 10.1002/etc.3768