[1] ANDREAE M O, CHARLSON R J, BRUYNSEELS F, et al. Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols[J]. Science, 1986, 232(4758): 1620-1623. doi: 10.1126/science.232.4758.1620
[2] DENTENER F J, CARMICHAEL G R, ZHANG Y, et al. Role of mineral aerosol as a reactive surface in the global troposphere[J]. Journal of Geophysical Research:Atmospheres, 1996, 101(D17): 22869-22889. doi: 10.1029/96JD01818
[3] HARRISON S P, KOHFELD K E, ROELANDT C, et al. The role of dust in climate changes today, at the last glacial maximum and in the future[J]. Earth-Science Reviews, 2001, 54(1/2/3): 43-80.
[4] 韩力慧, 庄国顺, 孙业乐, 等. 北京大气颗粒物污染本地源与外来源的区分: 元素比值Mg/Al示踪法估算矿物气溶胶外来源的贡献[J]. 中国科学B辑, 2005, 35(3): 237-246. doi: 10.3321/j.issn:1006-9240.2005.03.010 HAN L H, ZHUANG G S, SUN Y (L /y), et al. Distinguishing between local sources and external sources of atmospheric particulate pollution in Beijing—Estimation of contribution of external sources of mineral aerosols by element ratio Mg/Al tracer method[J]. Science in China (Series B), 2005, 35(3): 237-246 (in Chinese). doi: 10.3321/j.issn:1006-9240.2005.03.010
[5] PROSPERO J M. Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality[J]. Journal of Geophysical Research:Atmospheres, 1999, 104(D13): 15917-15927. doi: 10.1029/1999JD900072
[6] BAI F Y, DENG M S, CHEN M Y, et al. Atmospheric oxidation of fluoroalcohols initiated by ˙OH radicals in the presence of water and mineral dusts: Mechanism, kinetics, and risk assessment[J]. Physical Chemistry Chemical Physics, 2021, 23(23): 13115-13127. doi: 10.1039/D1CP01324F
[7] JI Y M, WANG H H, LI G Y, et al. Theoretical investigation on the role of mineral dust aerosol in atmospheric reaction: A case of the heterogeneous reaction of formaldehyde with NO2 onto SiO2 dust surface[J]. Atmospheric Environment, 2015, 103: 207-214. doi: 10.1016/j.atmosenv.2014.12.044
[8] LANGHAMMER D, KULLGREN J, ÖSTERLUND L. Photoinduced adsorption and oxidation of SO2 on anatase TiO2(101)[J]. Journal of the American Chemical Society, 2020, 142(52): 21767-21774. doi: 10.1021/jacs.0c09683
[9] LIU C, WANG H H, MA Q X, et al. Efficient conversion of NO to NO2 on SO2-aged MgO under atmospheric conditions[J]. Environmental Science & Technology, 2020, 54(19): 11848-11856.
[10] WANG W G, LIU M Y, WANG T T, et al. Sulfate formation is dominated by Manganese-catalyzed oxidation of SO2 on aerosol surfaces during haze events[J]. Nature Communications, 2021, 12: 1993. doi: 10.1038/s41467-021-22091-6
[11] LI M, ZHANG Q, ZHENG B, et al. Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: Drivers, speciation and ozone formation potential[J]. Atmospheric Chemistry and Physics, 2019, 19(13): 8897-8913. doi: 10.5194/acp-19-8897-2019
[12] RAVINDRA K, SOKHI R, VAN GRIEKEN R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation[J]. Atmospheric Environment, 2008, 42(13): 2895-2921. doi: 10.1016/j.atmosenv.2007.12.010
[13] ZHANG Y X, TAO S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004[J]. Atmospheric Environment, 2009, 43(4): 812-819. doi: 10.1016/j.atmosenv.2008.10.050
[14] KEITH L, TELLIARD W. ES&T special report: Priority pollutants: I-a perspective view[J]. Environmental Science & Technology, 1979, 13(4): 416-423.
[15] RAMÍREZ N, CUADRAS A, ROVIRA E, et al. Risk assessment related to atmospheric polycyclic aromatic hydrocarbons in gas and particle phases near industrial sites[J]. Environmental Health Perspectives, 2011, 119(8): 1110-1116. doi: 10.1289/ehp.1002855
[16] FU S, LI K, XIA X J, et al. Polycyclic aromatic hydrocarbons residues in sandstorm depositions in Beijing, China[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(2): 162-166. doi: 10.1007/s00128-008-9537-z
[17] WU S P, TAO S, XU F L, et al. Polycyclic aromatic hydrocarbons in dustfall in Tianjin, China[J]. Science of the Total Environment, 2005, 345(1/2/3): 115-126.
[18] ABELARD J, WILMSMEYER A R, EDWARDS A C, et al. Adsorption of substituted benzene derivatives on silica: Effects of electron withdrawing and donating groups[J]. The Journal of Physical Chemistry C, 2016, 120(24): 13024-13031. doi: 10.1021/acs.jpcc.6b02028
[19] BERRO Y, GUEDDIDA S, LEBÈGUE S, et al. Atomistic description of phenol, CO and H2O adsorption over crystalline and amorphous silica surfaces for hydrodeoxygenation applications[J]. Applied Surface Science, 2019, 494: 721-730. doi: 10.1016/j.apsusc.2019.07.216
[20] DANG Y, LIU Y B, FENG X, et al. Effect of dispersion on the adsorption of polycyclic aromatic hydrocarbons over the γ-Al2O3 (110) surface[J]. Applied Surface Science, 2019, 486: 137-143. doi: 10.1016/j.apsusc.2019.05.020
[21] GLADICH I, CARIGNANO M A, FRANCISCO J S. Adsorption and isomerization of glyoxal and methylglyoxal at the air/hydroxylated silica surface[J]. The Journal of Chemical Physics, 2020, 152(16): 164702. doi: 10.1063/1.5143402
[22] WANG H M, LIU H Z, CHEN Z, et al. Interaction between SO2 and NO in their adsorption and photocatalytic conversion on TiO2[J]. Chemosphere, 2020, 249: 126136. doi: 10.1016/j.chemosphere.2020.126136
[23] MEHMETI V, SADIKU M. A comprehensive DFT investigation of the adsorption of polycyclic aromatic hydrocarbons onto graphene[J]. Computation, 2022, 10(5): 68. doi: 10.3390/computation10050068
[24] SU L H, WANG Y, WANG Z Y, et al. Simulating and predicting adsorption of organic pollutants onto black phosphorus nanomaterials[J]. Nanomaterials, 2022, 12(4): 590. doi: 10.3390/nano12040590
[25] WANG B Y, XU X Y, HAO D, et al. Quantitative structure-activity relationship of amine collector adsorption on quartz surface[J]. Journal of Northeastern University, 2020, 41: 131.
[26] WANG Y, CHEN J W, WEI X X, et al. Unveiling adsorption mechanisms of organic pollutants onto carbon nanomaterials by density functional theory computations and linear free energy relationship modeling[J]. Environmental Science & Technology, 2017, 51(20): 11820-11828.
[27] GALE J D, ROHL A L, MILMAN V, et al. An ab initio study of the structure and properties of aluminum hydroxide: gibbsite and bayerite[J]. The Journal of Physical Chemistry B, 2001, 105(42): 10236-10242. doi: 10.1021/jp011795e
[28] LOUAER S, WANG Y, GUO L. Fast synthesis and size control of gibbsite nanoplatelets, their pseudomorphic dehydroxylation, and efficient dye adsorption[J]. ACS Applied Materials & Interfaces, 2013, 5(19): 9648-9655.
[29] 杨晓芳, 王东升, 孙中溪. 三水铝石(γ-Al(OH)3)和α-Al2O3表面酸碱性质与磷酸根吸附研究[J]. 环境科学学报, 2007, 27(4): 637-642. doi: 10.3321/j.issn:0253-2468.2007.04.016 YANG X F, WANG D S, SUN Z X. Studies on the surface acid-base properties and phosphate adsorption behavior of gibbsite (γ-Al(OH)3) and α-Al2O3[J]. Acta Scientiae Circumstantiae, 2007, 27(4): 637-642 (in Chinese). doi: 10.3321/j.issn:0253-2468.2007.04.016
[30] SAALFELD H, WEDDE M. Refinement of the crystal structure of gibbsite, A1(OH)3[J]. Zeitschrift Für Kristallographie - Crystalline Materials, 1974, 139(1/2/3/4/5/6): 129-135.
[31] FU W, VAUGHAN J, GILLESPIE A. in situ AFM investigation of gibbsite growth in high ionic strength, highly alkaline, aqueous media[J]. Hydrometallurgy, 2016, 161: 71-76. doi: 10.1016/j.hydromet.2016.01.030
[32] SHEN Z Z, ILTON E S, PRANGE M P, et al. Molecular dynamics simulations of the interfacial region between boehmite and gibbsite basal surfaces and high ionic strength aqueous solutions[J]. The Journal of Physical Chemistry C, 2017, 121(25): 13692-13700. doi: 10.1021/acs.jpcc.7b02463
[33] XU T Y, CATALANO J G. Impacts of surface site coordination on arsenate adsorption: Macroscopic uptake and binding mechanisms on aluminum hydroxide surfaces[J]. Langmuir, 2016, 32(49): 13261-13269. doi: 10.1021/acs.langmuir.6b03214
[34] YUN J N, ZHU C, WANG Q, et al. Strong affinity of mineral dusts for sulfur dioxide and catalytic mechanisms towards acid rain formation[J]. Catalysis Communications, 2018, 114: 79-83. doi: 10.1016/j.catcom.2018.06.011
[35] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. doi: 10.1016/0927-0256(96)00008-0
[36] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
[37] GRIMME S. Accurate description of van der Waals complexes by density functional theory including empirical corrections[J]. Journal of Computational Chemistry, 2004, 25(12): 1463-1473. doi: 10.1002/jcc.20078
[38] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799. doi: 10.1002/jcc.20495
[39] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. doi: 10.1063/1.3382344
[40] BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979. doi: 10.1103/PhysRevB.50.17953
[41] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. doi: 10.1103/PhysRevB.59.1758
[42] YUN J N, ZHU C, WANG Q, et al. Catalytic conversions of atmospheric sulfur dioxide and formation of acid rain over mineral dusts: Molecular oxygen as the oxygen source[J]. Chemosphere, 2019, 217: 18-25. doi: 10.1016/j.chemosphere.2018.10.201
[43] HOUNFODJI J W, KANHOUNNON W G, KPOTIN G, et al. Molecular insights on the adsorption of some pharmaceutical residues from wastewater on kaolinite surfaces[J]. Chemical Engineering Journal, 2021, 407: 127176. doi: 10.1016/j.cej.2020.127176
[44] ZHAO N, JU F, SONG Q W, et al. A simple empirical model for phenanthrene adsorption on soil clay minerals[J]. Journal of Hazardous Materials, 2022, 429: 127849. doi: 10.1016/j.jhazmat.2021.127849
[45] LAINÉ J, FOUCAUD Y, BONILLA-PETRICIOLET A, et al. Molecular picture of the adsorption of phenol, toluene, carbon dioxide and water on kaolinite basal surfaces[J]. Applied Surface Science, 2022, 585: 152699. doi: 10.1016/j.apsusc.2022.152699
[46] MOMMA K, IZUMI F. VESTA: A three-dimensional visualization system for electronic and structural analysis[J]. Journal of Applied Crystallography, 2008, 41(3): 653-658. doi: 10.1107/S0021889808012016
[47] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09;Gaussian Inc. , 2009.
[48] GRAMATICA P. Principles of QSAR models validation: Internal and external[J]. QSAR & Combinatorial Science, 2007, 26(5): 694-701.
[49] LI B, OU P F, WEI Y L, et al. Polycyclic aromatic hydrocarbons adsorption onto graphene: A DFT and AIMD study[J]. Materials, 2018, 11(5): 726. doi: 10.3390/ma11050726
[50] YU S J, WANG X X, AI Y J, et al. Experimental and theoretical studies on competitive adsorption of aromatic compounds on reduced graphene oxides[J]. Journal of Materials Chemistry A, 2016, 4(15): 5654-5662. doi: 10.1039/C6TA00890A
[51] O’BRIEN R M. A caution regarding rules of thumb for variance inflation factors[J]. Quality & Quantity, 2007, 41(5): 673-690.
[52] TODESCHINI R, CONSONNI V, MAIOCCHI A. The K correlation index: Theory development and its application in chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 1999, 46(1): 13-29. doi: 10.1016/S0169-7439(98)00124-5
[53] GOLBRAIKH A, SHEN M, XIAO Z Y, et al. Rational selection of training and test sets for the development of validated QSAR models[J]. Journal of Computer-Aided Molecular Design, 2003, 17(2): 241-253.
[54] ERIKSSON L, JAWORSKA J, WORTH A P, et al. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs[J]. Environmental Health Perspectives, 2003, 111(10): 1361-1375. doi: 10.1289/ehp.5758
[55] LEE R G M, BURNETT V, HARNER T, et al. Short-term temperature-dependent air-surface exchange and atmospheric concentrations of polychlorinated naphthalenes and organochlorine pesticides[J]. Environmental Science & Technology, 2000, 34(3): 393-398.
[56] LOHMANN R, HARNER T, THOMAS G O, et al. A comparative study of the gas-particle partitioning of PCDD/fs, PCBs, and PAHs[J]. Environmental Science & Technology, 2000, 34(23): 4943-4951.